簡易檢索 / 詳目顯示

研究生: 方立德
Li-Der Fang
論文名稱: 應用FMCW雷達於行車位置估測之高效率演算法研究
Efficient Algorithm for Vehicle Position Estimation in FMCW Radar
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 張道治
Dau-Chyrh Chang
洪賢昇
Hsien-Seng Hung
丘建青
Chien-ching Chiu
胡龍融
Long-Rong Hu
呂政修
Jenq-Shiou Leu
陳郁堂
Yie-Tarng Chen
賴坤財
Kuen-Tsair Lay
方文賢
Wen-Hsien Fang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 聯合距離與角度估測FMCW 雷達旋轉不變信號參數估測濾波信號分離自動配對
外文關鍵詞: joint range-angle estimation, FMCW radar, ESPRIT, filtering, signal clustering, automatic pairing
相關次數: 點閱:308下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文中,我們提出了一兼具簡單及精確的演算法, cluster ESPRIT, 以同時估測行車的距離和角度。此演算法首先採用一維旋轉不變技術信號參數估測 (1D-ESPRIT)演算法估量時間延遲和距離,並根據第一階段所估得的不同時間延遲(距離)參數設計一組相對應的濾波器,此濾波器組除了可將不同距離的目標物之信號予以分離至不同的群外,並降低了雜訊。最後再度引入一維ESPRIT演算法於分群後的信號中以估量出各個目標物的角度。

在所提出的 cluster ESPRIT演算法中,我們利用了濾波分群的技巧克服了傳統上當多個目標物其具有相同的距離(或角度)以及接收天線根數少於目標物個數情況下無法解析的問題。另外, 因所提出的演算法每一目標物之參數估測階段均利用一維ESPRIT演算法,因此可大幅降低計算的複雜度。此外,所提出的演算法在無需增加運算量下即可達到同目標物其距離及其相應角度的自動配對。

我們藉由電腦數值模擬及實際場測以驗證所發展的高效率演算法,與其他文獻所提供的方法相較,結果顯示所發展的演算法在估量準確度及複雜度間取得較好的平衡點,且在不同的模擬/實測場景下均能獲致較佳的性能。


In this dissertation, we consider a simple, yet accurate approach for joint angle and range estimation of multiple targets in the frequency-modulated continuous-wave (FMCW) radar systems. Our new algorithm starts with the estimation of time delays and ranges by establishing a Hankel matrix based on the received signals. The estimation of signal parameter via rotational invariance techniques (ESPRIT)is then utilized for delay and range estimation. Afterward, according to the estimated time delays, we develop a group of filters to divide the received signals into different clusters. Finally, ESPRIT is invoked again to estimate the angles of the targets in each cluster. With such a signal clustering process, the parameter estimation accuracy can be boosted %with the mitigation of noise
and the complexity can be reduced as now the eigenvalue decomposition
(EVD) is with respect to smaller matrices. Additionally, the new algorithm possesses some advantageous features. First, the number of the receive antennas could be less than that of the targets, as the number of targets is fewer in each cluster after the clustering process. Second, it is still applicable even when some targets are located at the same ranges or angles. Third,
the estimated ranges and angles are automatically paired
together without extra efforts. Both of the numerical simulations and practical experiments are conducted to demonstrate the superiority of our algorithm over the state-of-the-art works in terms of accuracy in various scenarios.

Chapter 1 BACKGROUND AND SIGNIFICANCE . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 General Overview of Automotive Position Estimation . . . . . . . 3 1.3 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 RELATED ALGORITHMS AND TECHNIQUES . . . . . 5 2.1 Overview of FMCW Radar . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Doppler E ect . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Ambiguous Range . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 System Model of FMCW Radar . . . . . . . . . . . . . . . 15 2.2 Parameters Estimation in FMCW Radar . . . . . . . . . . . . . . 17 2.2.1 Maximum Likelihood-Based Algorithms . . . . . . . . . . 17 2.2.2 Fourier-Based Algorithms . . . . . . . . . . . . . . . . . . 18 2.2.3 Subspace-Based Algorithms . . . . . . . . . . . . . . . . . 21 2.2.4 Signal Clustering Technique . . . . . . . . . . . . . . . . . 28 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 3 JOINT RANGE AND ANGLE ESTIMATION ALGO- RITHM IN AUTOMOTIVE FMCW RADAR . . . . . . . . . . . . . . 29 3.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Range Estimation . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 Signal Clustering . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 Angle Estimation . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.4 Summary of the Proposed Algorithm . . . . . . . . . . . . 36 3.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Pairing of the Estimated Parameters . . . . . . . . . . . . 37 3.2.2 Targets Identi able . . . . . . . . . . . . . . . . . . . . . . 37 3.2.3 Some Targets Located at the Same Ranges . . . . . . . . . 37 3.2.4 Choice of the Parameters L and LL . . . . . . . . . . . . 38 3.2.5 Determination of the Number of Targets . . . . . . . . . . 38 3.3 Numerical Simulations and Discussions . . . . . . . . . . . . . . . 39 3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 Practical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.1 Indoor Experiment . . . . . . . . . . . . . . . . . . . . . 61 3.5.2 Outdoor Experiment . . . . . . . . . . . . . . . . . . . . . 64 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 CONCLUSIONS AND PERSPECTIVES . . . . . . . . . . . . . . . . . 66 4.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . 66 4.2 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 67

[1] R. Zhang, W. Gong, V. Grzed, A. Yaworski and M. Greenspan, \Scene dy-
namics estimation for parameter adjustment of Gaussian mixturs models,"
IEEE Signal Processing Letters, vol. 21, no. 9, pp. 1130-1134, Sep. 2014.
[2] J. Wenger, \Automotive radar-status and perspectives, " in Proc. IEEE
Compound Semiconductor Integrated Circuit Symposium ( CSICS), pp. 21-
24, 2005.
[3] B. Sinzig, Forward Collision accident: The (Swiss) Insurance Company
Perspective. AXA Winterthur, 2009.
[4] Y. Zhang, X. Sun, H. Xu and E. Yao, \Tracking multi-vehicles with refer-
ence points switches at the intersection using a roadside LiDAR sensor,"
IEEE Access, vol. 7, pp. 174072-174082, 2019.
[5] M. Vespe, G. Jones, and C. J. Baker, \Lessons for radar," IEEE Signal
Processing Magazine, vol. 26, no. 1, pp. 65-75, Jan. 2009.
[6] H. Rohling and M.-M. Meinecke, \Waveform design principles for auto-
motive radar systems," in Proc IEEE Radar Conf., vol. 4, pp. 1-4, Oct.
2001.
[7] Parker, Sybil P (EDT), McGraw-Hill Dictionary of Scienti c and Technical
Terms. McGraw-Hill, 2002.
[8] C. Li, \A review on recent progress of portable short-range no-contact mi-
crowave radar system," IEEE Trans. Micro. Theory Techn., vol. 65, no. 5,
pp. 1692-1706, May 2017.
[9] Y. Kim, S. Tak, J. Kim and H. Yeo, \Identifying major accident scenarios
in intersection and evaluation of collision warning system," in Proc. IEEE
69
20th Internal Conf. on Intelligent Transportation Systems (ITSC), pp. 1-6,
2017.
[10] S. Tokoro, \Automotive application systems of a millimeter-wave radar,"
in Proc. IEEE Intelligent Vehicles Symp., pp. 260-265, 1996.
[11] W. Jones, \Building safer cars," IEEE Spectrum, vol. 39, no. 1, pp. 82-85,
Jan. 2002.
[12] C. Gu, R. Li, C. Li and S.-B. Jiang, \Doppler radar respiration measure-
ment for gated lung cancer," in Proc. IEEE Topical Conf. on Biomedical
Wireless Technologies, Networks, and Sensing Systems (BiowireleSS), pp.
91-94, 2011.
[13] E. C. Fear and M. A. Stuchly, \Microwave system for breast tumor de-
tection," IEEE Microwave and Guide Wave Letters, vol. 9 no. 11, Nov.
1999.
[14] Y. Xiong, Z. Peng, G. Xing, W. Zhang and G. Meng, \Accurate and robust
displacement measurement for FMCW radar vibration monitoring," IEEE
Sensors Journal, vol. 18, no. 3, pp. 1131-1139, Feb. 2017.
[15] R. O. Schmidt, \Multiple emitter location and signal parameter estima-
tion," IEEE Trans. Antenna Propag., vol. 34, no. 3, pp. 276-280, Mar.
1986.
[16] S. Kim and K.-K. Lee, \ Low-complexity joint extrapolation-MUSIC-based
2-D parameter estimator for vital FMCW radar," IEEE Sensors Journal,
vol. 19, no. 6, pp. 2205-2216, Mar. 2019.
[17] P. Stoica and A. Nehorai, \MUSIC, maximum likelihood, and Cramer-Rao
bound: Further results and comparisons," IEEE Trans. Acoust., Speech
Signal Processing, vol. 38, no. 12, pp. 2140-2150, Dec. 2014.
70
[18] S.-H. Jeong, Y.-N, Oh and K.-H Lee, \Design of 24 GHz radar with
subspace-based digital beam forming for ACC stop-and-go system," ETRI
Journal, vol. 32, no. 5, pp. 827-830, Oct. 2010.
[19] M. E. Yanik and M. Torlak, \Near- eld MIMO-SAR millimeter-wave imag-
ing with sparsely sampled aperture data," IEEE Access, vol. 7, pp. 31801-
31819, Feb., 2019.
[20] Z. Yi, R. Zhange, B. Xu, Y. Chen, L. Zhu, F. Li, G. Yang and Y. Luo, \A
wide-angle beam scanning antenna in E-plane for K-band radar sensor,"
IEEE Access, vol. 7, pp. 1171684-1171690, Nov. 2019.
[21] H. Zhou, P. Cao and S. Chen, \A novel waveform design for multi-target
detection in automotive FMCW radar," in Proc. IEEE Radar Confer-
ence(RadarConf), May 2016.
[22] Z. Duan, Y. Wu, M. Li, W. Wang, Y. Liu and S. Yang, \A novel FMCW
waveform for multi-target detection and the corresponding algorithm," in
Proc. IEEE 5th International Symposium on Electromagnetic Compatibility
(EMC-Beijing), pp. 1-4, 2017.
[23] Y. Zhao and Y. Su, \Vehicle detection in complex urban scenes using Gaus-
sian mixture model with FMCW radar," IEEE Sensors Journal, vol. 17,
no. 18, pp. 5948-5953, Sep. 2017.
[24] V. Winkler, \Range Doppler detection for automotive FMCW radars," in
Proc. Eur. Microw. Conf., pp. 1445-1448, 2007.
[25] E. Hyun, W. Oh and J.-H. Lee, \Two-step moving target detection al-
gorithm for automotive 77 GHz FMCW radar," in Proc. IEEE Vehicular
Tech. Conf., pp. 1-5, 2010.
[26] J. Choi, J. Park and D. Yeom, \High angular resolution estimation meth-
ods for vehicle FMCW radar," in Proc. IEEE CIE International Conf. on
Radar, vol. 2, pp. 1868-1871, 2011.
71
[27] P.Wenig, M. Schoor, O. Gunther, B. Yang and R.Weigel, \System design of
a 77 GHz automotive radar sensor with super resolution DOA estimation,"
in Proc. Int. Signals, Syst., Electron. Symp., pp. 537-540, 2007.
[28] R. Schmidt, \Multiple emitter location and signal parameter estimation,"
IEEE Trans. Antennas and Propagation, vol. 34, no. 3, pp. 276-280, March
1986.
[29] R. Roy and T. Kailath, \ESPRIT-Estimation of signal parameters via ro-
tational invariance techniques," IEEE Trans. Acoustics, Speech, and Signal
Process., vol. 37, no. 7, pp. 984-995, July 1989.
[30] F. Bel ori, W. van Rossum, and P. Hoogeboom, \Application of 2D MUSIC
algorithm to range-azimuth FMCW radar data," in Proc. Eur. Radar Conf.,
pp. 242-245, 2012.
[31] S. Kim, D. Oh and J. Lee, \Joint DFT-ESPRIT estimation for TOA and
DOA in vehicle FMCW radars," IEEE Ant. and Wireless Propagation Let-
ters, vol. 14, pp. 1710-1713, Apr. 2015.
[32] D. Oh, Y. Ju and J. Lee, \Subspace-based auto-paired range and DOA
estimation of dual-channel FMCW radar without joint diagonalisation,"
Electronics Letters, vol. 50, no. 18, pp. 1320-1322, Aug. 2014.
[33] D. Oh, Y. Ju, H. Nam and J.-H. Lee, \Dual smoothing DOA estimation of
two-channel FMCW radar," IEEE Trans. Aerosp. Electron. Syst., vol. 52,
no. 2, pp. 904-917, Apr. 2016.
[34] J. C. Lin and J. Salinger, \Microwave measurement of respiration," in IEEE
MIT-S int. Microwave Symp. Dig., pp. 285-287, May 1975.
[35] G. Wang, C. Gu, T. Inoue and C. Li, \A hybrid FMCW-interferometry
radar for indoor precise positioning and versatile life activity monitoring,"
IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812-2822, Nov.
2014.
72
[36] A. Santra, R. V. Ulaganathan and T. Finke, \Short-range millimetric-wave
radar system for occupancy sensing application," IEEE Sens. Lett., vol. 2,
no. 3, pp. 904-917, Sep. 2018.
[37] M. A. Abou-Khousa, D, L. Simms, S. Kharkovsky and R. Zoughi, \High-
resolution short-range wideband FMCW radar measurements based on MU-
SIC algorithm," in Proc. Inst. Instrum Meas. Techn., pp. 498-501, May
2009.
[38] D. Rife and R. Boorstyn, \Single tone parameter estimation discrete time
observations," in IEEE Trans. Inf. Theory, vol. IT-20, no. 5, pp. 591-598,
Sep. 1974.
[39] M. I. Skolinik, Introduction to Radar System. McGraw-Hill, Inc., 1980.
[40] A. G. Stove, \Linear FMCW radar techniques," in Proc. Inst. Electr. Eng.
F-Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992.
[41] Z. Liu and F.-L. Bien, \An improved model of vehicle radar for multi-target
based on stepped frequency pulse radar," in IEEE International Wireless
Symposium (IWS), pp. 1-3, July 2014.
[42] J. Browne, \Radar bring safety to modern ADAS vehicles," White Paper,
no. 1MA239-0e1, Rohde Schwarz GmbH Co., Dec. 2017.
[43] S.-Y. Jeon, M.-H. Ka, S. Shin. M. Kim, Se. Kim, Su. Kim, J. Kim, A. D, J.
Kim and H. Chung, \W-Band MIMO FMCW radar system with simulta-
neous transmission of orthogonal waveforms for high-resolution imaging,"
IEEE Trans. Microwave Theory and Techniques, vol. 66, no. 11, pp. 5051-
5064, Nov. 2018,
[44] G.-W. Fang, C.-Y Huang and C.-L. Yung, \Simultaneous detection of multi-
target vital signs using EEMD algorithm based on FMCW radar," in Proc.
IEEE MTT-S International Microwave Biomedical Conference (IMBioC),
vol. 1, 2019.
73
[45] S. M. Patole, M. Torlak, D. Wang and M. Ali, \Automotive radars: A
review of signal processing techniques," IEEE Signal Processing Magazine,
vol. 34, no. 2, pp. 22-35, Mar. 2017.
[46] L. Ding, M. Ali, S. Patole and A. Daback, \ Vibration parameter estimation
using FMCW radar," in Proc. IEEE National Confer. on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2224-2228, Mar. 2016.
[47] M. Alizadeh, G. Shaker, J. Carlos, P. P. Morita and S. N. Safeddin, \Re-
mote monitoring of human vital signs using mm-wave FMCW radar," IEEE
Access, vol. 7, pp. 54958-54968, May 2019.
[48] M. C. Budge and M. P. Burt, \Range correlation e ects in radar," in Proc.
IEEE National Radar Conference, pp. 212-216, 1993.
[49] K. Siddiq, M. K. Hobden, S. R. Pennock and R. J. Watson, \Phase noise
in FMCW radar systems," IEEE Trans. Aerospace and Electronic Systems,
vol. 55, no. 1, pp. 70-81, Feb. 2019.
[50] V. Winkler, \Range Doppler detection for automotive FMCW radars," in
Proc. Eur. Microw. Conf., pp. 1445-1448, 2007.
[51] S. O. Piper, \ FMCW linearizer bandwidth requirements," in Proc. IEEE
Radar Conf., pp. 142-146, May 1991.
[52] S. Kurt, \Range resolution of improvement of FMCW radars," in master
thesis of middle east technical university, 2007.
[53] M. Ash, M. Ritchie, K. Chetty and P. V. Brennan, \A new multistatic
FMCW radar architecture by over-the-air deramping," IEEE Sensors Jour-
nal, vol. 15, no. 12, pp. 1-8, Dec. 2015.
[54] Y. Ju, Y. Jin and J. Lee, \Design and implementation of a 24GHz FMCW
radar system for automotive applications," in Proc. IEEE International
Radar Conf., pp. 1-4, 2014.
74
[55] W.-H. Fang, Y.-C. Lee, and Y.-T. Chen, \Maximum likelihood 2-D DOA
estimation via signal separation and importance sampling," IEEE Antennas
and Wireless Propagation Letters, vol. 15, pp. 746-749, Aug. 2015.
[56] C. J. Huang, C. W. Dai, T. Y. Tsai, W. H. Chung and T. S. Lee, \A closed-
form phsed-comparsion ML DOA estimator for automotive radar with one
single snapshot," in Proc. IEICE Electr. Express (ELEX), vol. 10, 2013.
[57] W.-H. Fang, Y.-C. Lee and Y.-T. Chen, \Importance sampling-based maxi-
mum likelihood estimation for multidimensional harmonic retrieval," IEEE
Signal Processing Letters, vol. 23, no. 1, pp. 35-39, Jan. 2016.
[58] A. L. Swaindlehurst and P. Stoica, \Maximum likelihood methods in radar
array signal processing," Proceedings of the IEEE, vol. 86, no. 2, pp. 421-
441, 1998.
[59] B. Ottersten, M. Viberg and T. Kailath, \Analysis of subspace tting and
ML techniques for parameter estimation from sensor array data," IEEE
Trans. Signal Processing, vol. 40, no. 3, pp. 590-600, Mar. 1992.
[60] M. P. Clark and L. L. Scharf, \Two-dimensional modal analysis based on
maximum likelihood," IEEE Trans. Signal Processing, vol. 42, no. 6, pp.
1143-1152, Jun. 1994.
[61] H. L. Van Trees, Optimum Array Processing. Wiley-Interscience, 2002.
[62] H. Akaike, \Fitting autoregressive models for prediction," Ann. Inst. Stat.
Math., vol. 21, no. 1, pp. 243-247, 1969.
[63] J. Rissanen, \Modeling by shortest data description," Automatica, vol. 14,
no. 5, pp. 465-471, 1978.
[64] I. Ziskind and M. Wax, \Maximum likelihood locationation of multiple
sources by alternating projection," IEEE Trans. Acoustic, Speech, and Sig-
nal Processing, vol. 36, no. 10, pp. 1553-1560, Oct. 1988.
75
[65] R. L. Lagendijk, J. Biemond and D. E. Boekee, \Blur identi cation us-
ing the expectation-maximization algorithm," in Proc. IEEE Int'l Conf.
Acoustics, Speech, and Signal Processing, pp. 1397-1400, 1989.
[66] G. Bournaka, J. Heckenbach, A. Baruzzi, D. Cristallini and H. Kuschel, \A
two stage beamforming approach for low complexity CFAR detection and
localization for passive radar," in Proc. IEEE Radar Conference (Radar-
Conf), pp. 1-4, 2016.
[67] A. Mayer and F. Hellwig, \System performance optimization methodol-
ogy for In neon's 32-bit automotive microcontroller architecture," in Proc.
IEEE Design, Automation and Test in Europe, pp. 962-966, 2008.
[68] C. Iovescu and S. Rao, \The fundamentals of millimeter sensors," Texas
Instruments, May 2017.
[69] J. Choi, J. Park and D. Yeom, \High angular resolution estimation methods
for vehicle FMCW radar," in IEEE Radar Conf., vol. 2, pp. 1868-1871,
2011.
[70] K. Feher, Wireless Digital Communication. Englewood Chi s, NJ: Prentice-
Hall. 1995.
[71] H. Stark and J. W. Woods, Probability, Random Process and Estimation
Theory for Engineers. Englewood Cli s, NJ: Prentic-Hall, 1986.
[72] S. Chandran ediator, Advances in Direction-of-Arrival Estimation. Artech
House, 2005.
[73] C.-H Lin and W.-H Fang, \Joint angle and delay estimation in frequency
hopping systems," IEEE Trans. on Aerospace and Electronic Systems, vol.
49, no. 2, pp. 1042-1056, April 2013.
76
[74] W.-H. Fang and L.-D. Fang, Joint angle and range estimation with signal
clustering in FMCW radar, IEEE Sensors Journal, vol. 20, no. 4, pp.
1882-1892, Feb. 2020.
[75] G. Su and M. Morf, \Modal decomposition signal subspace algorithms,"
IEEE Trans. Acoustics Speech, Signal Processing, vol. 34, no. 3, pp. 585-
602, June 1986.
[76] J. Gilbert and L. Gilbert, Linear Algebra and Matrix Theory. New Dehli,
India: Academic, 2005.
[77] C.-H. Lin and W.-H. Fang, \Ecient multidimensional harmonic retrieval:
A hierarchical signal separation framework," IEEE Signal Processing Let-
ters, vol. 20, no. 5, pp. 427-430, May 2013.
[78] G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed. Johns
Hopkins University Press, 1996.
[79] M. Wax and T. Kailath, \Detection of signals by information theoretic
criteria," IEEE Trans. Acoustics Speech,Signal Processing, vol. 34, no. 6,
pp. 1361-1375, Dec. 1986.
[80] K. P. Burnham, and D. R. Anderson, Model Selection and Multimodel In-
ference: A Practical-Theoretic Approach. 2nd ed. Springer-Verlag, 2002.
[81] E. Aboutanios and B. Mulgrew, \Iterative frequency estimation by inter-
polation on Fourier coecients," IEEE Trans. Signal Processing, vol. 53,
no. 4, pp. 1237-1242, Apr. 2005.
[82] M. Wang, T. Wang, Y. Sun, Y. Wu, Y. Zhou and X. Yang, \Automated
FMCW radar experimental platform," in Proc. IEEE Advanced Information
Management, Communicates, Electronic and Automation Control Conf.,
pp. 856-860, 2018.
77
[83] H.-N. Wang, Y.-W. Huang, and S.-J. Chung, \Spatial diversity 24-GHz
FMCW radar with ground e ect compensation for automotive applica-
tions," IEEE Trans. Vehicular Technology, vol. 66, no. 2, pp. 965-973, Feb.
2017.
[84] C. Deck, H.-J. Ng, R. Agethen, M. PourMousavi, H.-P. Forstner, M. Wo-
jnowski, K.Pressel, R. Weigel, A. Hagelauer and D. Kissinger, \Industrial
mmWave radar sensor in embedded wafer-level BGA packaging technology,"
IEEE Sensors Journal, vol. 16, no. 17, pp. 6566-6578, Sep. 2017.
[85] E. Ozturk, D. Genschow, U. Yodprasit, B. Yilmaz, D. Kissinger, W. Deb-
ski and W. Winkler, \A 60-GHz SiGe BiCMOS monostatic transceiver for
FMCW radar applications," IEEE Trans. Microwave Theory and Tech-
niques, vol. 65, no. 12, pp. 5309-5323, 2017.
[86] D. Kurniawan, O. Heriana, T. Praludi and R. Sariningrum, \Data acqui-
sition and signal processing on FMCW navigation radar system," in Proc.
Radar, Antenna, Microwave, Electro., and Telecom., pp. 45-52, Oct. 2017.
[87] A. Melzer, F. Starzer, H. Joger and M. Huemer, \Real-time mitigation
of short-range leakage in automotive FMCW radar transceivers," IEEE
Trans. Circuits and Systems II: Express Briefs, vol. 64, no. 7, pp. 847-851,
July 2017.
[88] A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana and S. Ciochina, \Short-range
wideband FMCW radar for millimetric displacement measurements," IEEE
Trans. Geoscience and Remote Sensing, vol. 52, no. 9, Sep. 2014.
[89] S. Aulia, A. B. Suksmono and A. Munir, \Stationary and moving targets
detection on FMCW radar using GNU radio-based software de ned radio,"
in Proc. Intell. Signal Process. and Commun. Systems, pp. 468-473, 2015.
78
[90] C. Will, P. Vaishnav, A. Chakraborty and A. Santra, \Human target de-
tection, tracking, and classi cation using 24 GHz FMCW radar," IEEE
Sensors Journal, vol. 19, no. 17, pp. 7283-7299, Sept. 2019.
[91] C.-B. Ko, J.-H. Lee, \Performance of ESPRIT and root-MUSIC for angle-
of-arrival(AOA) estimation," in Proc. IEEE World Sym. on Communica-
tion Eng., pp. 48-52, 2018.
[92] J. C. Lin and J. Salinger, \Microwave measurement of respiration," in Proc.
IEEE MIT-S int. Microwave Symp. Dig., pp. 285-287, May 1975.
[93] G. Wang, C. Gu, T. Inoue and C. Li, \A hybrid FMCW-interferometry
radar for indoor precise positioning and versatile life activity monitoring,"
IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812-2822, Nov.
2014.
[94] J. Dickmann, J. Klappstein, M. Hahn, N. Appenrodt, H. L. Bloecher,
K. Werber and A. Sailer, \Automotive radar the key technology for au-
tonomous driving: From detection and ranging to environmental under-
standing," in Proc. IEEE Radar Conf., pp. 1-6, 2016.
[95] F. B. Khalid, D. T. Nugraha, A. Roger, R. Ygnace and M. Bichl, \Dis-
tributed signal processing of high-resolution FMCW MIMO radar for au-
tomotive applications," in Proc. IEEE 15th European Radar Conf., pp.
513-516, Sep. 2018.
[96] T. Wagner, R.Feger and A. Stelzer, \Radar signal processing for jointly
estimating tracks and micro-doppler signatures," IEEE Access, vol. 5, pp.
1220-1238, Feb. 2017.

QR CODE