簡易檢索 / 詳目顯示

研究生: 吳昭逸
Chao-Yi Wu
論文名稱: 自調適PID控制方法應用於窯爐溫控器
Auto tuning PID Control Methods Application in Kiln Thermal Controller
指導教授: 許孟超
Mon-Chau Shie
口試委員: 阮聖彰
Shanq-Jang Ruan
吳晉賢
Chin-Hsien Wu
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 46
中文關鍵詞: 窯爐控制低功率微處理器PID control
外文關鍵詞: Kiln Control, Low power microprocessor, PID control
相關次數: 點閱:238下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文開始於計畫設計染整業的染色控制器專案。當時與染整公司洽談合作開發案,因染整公司方因素終止其合作開發案。但染色控制器與窯爐溫控器架構部分相同,故轉而進行窯爐溫控器的研製。窯爐是窯業設備中最貴重的產品,且窯爐控制器與窯爐密不可分。現代製陶人仍然使用著無電腦控制燒成曲線的溫度控制器為主。由於不同的燒成曲線,能夠燒出不同的製品-如青白瓷等。製陶人常需要人工的修正燒成曲線做試驗,沒辦法使用自動控制燒成曲線的種類。現今的數位溫度控制器價格依然頗高,一般的控制器如OMROM E5CN-Q2H03T-FLK價位約為台幣5600元。故開發一個具有低價位且具有電腦控制燒成曲線的功能的窯爐溫控器就成為一個重要課題。由於台灣高溫窯爐溫控器的相關論文較少,故整理此論文做為日後參考。
本論文試著改善其溫度控制器的成本,並且增加電腦連線的功能,本論文採用5塊錢美金的低功率微處理器MSP430為控制核心,他內建12 bit ADC解析度足以應用於溫度電壓讀值;MSP430具有硬體的32位元乘法器,可以快速的直接計算PID控制值。本論文採用具有冷端點補償特性的熱電偶放大器AD8495作為輸入熱電偶的電壓放大器。本論文選用松下電機的具有5安培交流電額定電流能力的固態繼電器來做火力調整。溫度控制系統架構以溫度輸入K型熱電偶感測溫度的微電壓,再由冷端點補償熱電偶放大器放大微電壓以供ADC輸入使用,使MSP430內建12位元A/D轉換器轉換電壓以供PID程序計算輸出PWM調整信號;輸出信號PWM輸出到SSR,SSR透過外接的交流電提供電力給電熱絲,依據PWM DUTY 的Ton時間大小,可以實現控制烤箱或者是窯爐的溫度的目的。
以烤箱來做DUT的實驗結果顯示,本論文提出的自調適增量式PID控制器(Auto Tuning Increment PID Controller)比Relay PID Controller具有較快的Settling Time,快了64分鐘並且只有0.47度的Overshoot。使用窯爐測試時,本論文提出的自調適增量式PID控制器(Auto Tuning Increment PID Controller)能夠讓窯爐升溫到900度,在這個高溫的環境下,能夠良好的工作、並且不受環境的影響,符合窯爐工業的需要。


In this thesis we design a MSP430-based temperature controller applied to the furnace used to manufacture expensive ceramic products. In the high temperature furnace the furnace controller and furnace are inseparable. Modern ceramics needs precise computer-based control of the firing curve to achieve the needed the temperature profile. Pottery is using different firing curve to burn a variety of products - such as the blue and white Porcelain. They traditional need manual correction firing curve during production. The development of automatic control of the firing curve is crucial to the improvement of the quality and yield of the ceramic products. Today's digital temperature controller prices are still high. In general, such as OMROM E5CN-Q2H03T-FLK price is about NT $ 5600 dollars. Therefore, the development low-cost computer-based firing curve function of the furnace thermostat becomes an important topic. In the process to design the temperature controller with high temperature control range, we find that relevant papers for furnace thermostat are scarce in Taiwan. We create this paper to serve as a reference for further development.
In order to reduce cost of the temperature controller and add the computer monitoring capability, we select low-cost and low-power microprocessor MSP430 as the MCU with built-in 12-bit ADC resolution which would be sufficient for temperature voltage reading. The MSP430 has 32-bit hardware multiplier can efficiently compute PID control values. In high temperature environment, the temperature conversion has to use cold junction compensated thermocouple amplifier - AD8495 to be an input amplifier. This thesis selected the Panasonic motor with 5 amps AC rated current capacity of solid state relays as the output firing control. The system use thermocouple to sense temperature in micro voltage which feeds voltage to AD8495 and gain micro volt to mini volt for ADC input. After that, PID process calculates the output of PWM level to control SSR. According to the PWM DUTY ON duration, it realizes method of control the furnace temperature.
We implement Auto Tuning Increment PID algorithm in the controller. In small scale oven experiment result shows the Auto Tuning Increment PID algorithm achieve steady earlier than the Relay PID Controller does by 64 minutes. Our algorithm also has 0.47 degrees smaller overshoot. In real kiln’s experiment result, the Auto Tuning Increment PID Controller is able to heat the furnace up to 900 degrees in the high temperature environment. The Auto Tuning Increment PID Controller has good system response in this high temperature environment. Our system can be employed in the kiln’s industry and meet their requirement.

論文摘要 i Abstract v 致謝 vi 目錄 vii 圖索引 x 表索引 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 研究背景與相關研究 4 2.1 研究背景 4 2.2 窯爐的演變與背景 7 2.3 現代窯爐與燒成曲線 7 第三章 窯爐溫控器之軟硬體架構 11 3.1 硬體系統架構 11 3.1.1 12bit A/D Converter 13 3.1.2 ADC12_A 內核 14 3.1.3 ADC12_A 輸入接腳以及多工器 15 3.1.4 ADC12_A 參考電壓 15 3.1.5 ADC12_A 取樣與轉換時脈 15 3.1.6 ADC12_A 轉換模式 17 3.1.7 核心架構 18 3.1.8 冷補償放大器 19 3.1.9 熱電偶 21 3.1.10 各種熱電偶的特性與使用環境的適應性 22 3.1.11 固態繼電器(SSR) 26 3.1.12 PC溝通介面(RS232) 27 3.2 軟體系統架構 27 3.2.1 主迴圈軟體架構 28 3.2.2 溫度電壓取樣 29 3.2.3 PID控制周期時間 29 3.2.4 火力輸出控制(PWM output) 30 3.2.5 LED七段顯示器溫度顯示 30 3.2.6 UART溫度控制數據輸出 31 3.2.7 PID 演算法 31 3.2.8 自適應控制 32 第四章 系統整合與實驗結果 34 4.1 系統實做環境 34 4.1.1 BW-DK5438評估板 35 4.1.2 信號轉換板 35 4.2 系統測試 36 4.2.1 溫度擷取 36 4.2.2 烤箱實驗結果 36 4.2.3 窯爐實驗結果 40 第五章 結論與未來展望 42 5.1 結論 42 5.2 未來展望 43 參考文獻 44

[1] P. Eykhoff, System Identification: Parameter and State Estimation, New York: Wiley-Interscience , 1974.
[2] L.Ljung,System Identification: Theory for the User﹐NJ: Prentice-Hall , 1987.
[3] 林志遠,開關加熱系統的雙迴路補償溫度控制,國立中央大學電
機工程學系碩士論文, 2007
[4] 巫信輝,數位化溫度控制器關鍵技術之探討,國立中央大學機械 工程研究所碩士論文, 2000
[5] http://ceramics.ykvs.ntpc.edu.tw/new_page_10.htm,鶯歌工商陶工科網頁
[6] http://taiwanpedia.culture.tw/web/content?ID=13530,台灣大百科網頁
[7] 陶瓷材料分析在陶瓷生產的應用講義,陶瓷材料分析與應用;陶、瓷坯與釉的調製講座,李慶樹老師著作,pp15, 2011
[8] TI MSP430x5xx Family User Guide Literature, Number: SLAU208 Chapter 18, June 2008.
[9] TI MIXED SIGNAL MICROCONTROLLER MSP430F543x, MSP430F541x, MSP430F543xA, MSP430F541xA Datasheet, Literature Number: SLAS612, September 2008
[10] ADI Precision Thermocouple Amplifiers with Cold Junction Compensation AD8494/AD8495/AD8496/AD8497 Datasheet, Rev C, 2010.
[11] Kester, W., Bryant, W. and Jung, W., “Section 7: Temperature Sensors”, Practical Design Techniques for Sensor Signal Conditioning, Analog Devices, 1999.
[12] http://www.maxim-ic.com/app-notes/index.mvp/id/4026
[13] National Institute of Standards and Technology – NIST ITS-90 Thermalcouple Database. NIST Standard Reference Database 60, Ver 2.0 (Web Version) - http://srdata.nist.gov/its90/main/
[14] ADI Application Note AN-1087 Thermocouple Linearization When Using AD8494/AD8495/AD8496/AD8497 by Reem Malik, Rev O. 2010.
[15] Resistance temperature detector catalog, pp.1, WADE SENSOR, Ltd.
[16] 微感測系統工程講義之熱電偶與紅外線溫度,崑山科技大學機械系,朱孝業老師,pp14-15, 2005
[17] SHEATHED THERMOCOUPLE catalog, pp 45, WADE SENSOR, Ltd.
[18] Panasonic AQ1 datasheet - 10A high-capacity PC board terminal type SSR added to lineup.
[19] Panasonic SSR Principle of Operation Guide, http://www3.panasonic.biz/ac/e/control/relay/solid-state/related_information/operation.jsp
[20] Leijianjun1 zhuhua1 Gudeying2 Temperature Control System of Resistance Furnace Based on Fuzzy-PID, 2003
[21] Ziegler, J. G. and N. B. Nichols, Optimum Settings for Automatic Controllers, Transaction of the ASME, vol.64, pp.759~768, 1942.
[22] Rivera, D. E., Skogestad, S., and Morari, M., Internal Model Control. 4. PID Controller design, Ind. Eng. Chemical Process Design Dev., 25, pp. 252~265, 1986.
[23] Chien, I. L., and Fruehauf, P. S., Consider IMC Tuning to Improve Controller Performance, Chemical Engineering Process, pp. 33~41, 1990.
[24] TIAN Yan-bing, The Design of an Auto-Tuning PID Controller for Temperature Control, 2006
[25] Astrom, K.J. and T. Hagglund, Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins, Automatica, vol.20, pp.645~651, 1984.
[26] Hang C.C., K.J. Astrom and W.K. Ho, Refinements of the Ziegle-Nichols tuning formula, IEE proceedings Pt. D, Control theory & Applications, vol.138, no. 2, pp111~118, 1991.
[27] Ho, W, K.,C. C. Hang L. S. Cao, Tuning of PID Controllers Based on Gain and Phase Margin Specifications, Automatica, vol.31, no. 3, pp. 497~502, 1995.
[28] Astrom, K. J., C. C. Hang, P. Persson and W. K. Ho, Toward Intelligent PID Control, Automatica, vol.28., no. 1, pp.1~9, 1992.
[29] Ho, W. K., O. P. Gan, E. B. Tay and E. L. Ang, Performance and Gain and Phase Margins of Well-Known PID Tuning Formulas, IEEE
Trans. On Control Systems Technology, vol.4, pp.473~477, 1996.
[30] Ho, W. K., C. C. Hang and J. H. Zhou, Performance and Gain and Phase Margins of Well-Known PI Tuning Formula, IEEE Trans. On Control Systems Technology, vol.3, no. 2, pp.245~248, 1995.
[31] SHIUH-JER HUANG, YI-HO LO, Metal Chamber Temperature control by Using Fuzzy PID Gain Auto-tuning strategy, ISSN: 1991-8763, Issue 1, Volume 4, January, 2009
[32] E. Dotnr Bolat , Y. Bolat+', K' Erkan INTERNATIONALC ONFERENCEO N ELECTRICALA ND ELECTROMCS ENGINEERING" Temperature Control Using Improved Auto tuning PID Control Methods, 1999.

QR CODE