簡易檢索 / 詳目顯示

研究生: 楊依茹
Yi-Ju Yang
論文名稱: 利用接收端校正改善射頻指紋特徵可攜性之研究
Research on RF Fingerprint Portability Improvement Using Receiver Calibration
指導教授: 劉馨勤
Hsin-Chin Liu
口試委員: 黃紹華
Shaw-Hwa Hwang
林俊霖
Chun-Lin Lin
張立中
Li-Chung Chang
劉馨勤
Hsin-Chin Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 射頻指紋特徵裝置辨識可攜性分布校正
外文關鍵詞: RF fingerprint, device identification, portability, distribution calibration
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來無線通訊技術發展快速並且日漸普及,在日常生活中已成為一種普遍的通訊方式。然而無線通訊藉由電磁波傳遞的特性,使得通訊範圍內的使用者皆可參與通訊,進而對訊號造成影響。因此在無線通訊發展帶來了便利的同時,卻也在安全議題上產生了隱憂。
近幾年在物理層中發展出的裝置指紋特徵辨識技術,為一種難以仿冒且可靠的識別技術。但同時指紋特徵含有缺乏可攜性的問題,使得相異裝置所提取之特徵無法通用,每台接收裝置皆須自行提取特徵並訓練模型才能進行傳送端辨識,進而導致技術難以應用至實際產品中。因此如何改善指紋特徵可攜性問題成為一項重大課題。
本篇論文提出一種改善指紋特徵可攜性的校正方法,該方法為先透過調整訊號分布之三、四階動差,令分布接近非偏斜分布,而後再進行一、二階動差調整以去除大部分的接收端差異,令訊號無關於接收端差異影響。如此一來透過處理後之訊號以提取指紋特徵則可以使特徵可攜性提高,並令準確率提升。


In recent years, since wireless communication technology has developed rapidly, it
turns into a common way of communication nowadays. However, the development of wireless communication technology brings both convenience and the potential threat of
information security at the same time. Wireless communication is transmitted by electromagnetic waves, so users in the same communication range can have their own
communications simultaneous and may interfere other users' communications.
Recent research has found that RF fingerprint identification in the physical layer is the key to increasing communication security as it is reliable and can hardly be counterfeited. On the other side, the lack of portability of RF fingerprints causes the inaccessibility of using the same features extracted by one receiver at another receiver. Thus each receiver must extract its features for training models before identifying the transmitter, which causes difficulties in applying the technique on production. Therefore, improving RF fingerprint portability becomes a significant issue.
In this work, we propose a calibration method to improve the RF fingerprint
portability. Firstly, we calibrate the skewness and kurtosis of received signals to make it close to the non-skewed distribution, and then calibrate the mean and variance of received signals to remove the differences between each receiver. Experimental results show that the proposed method can improve feature portability and increase the accuracy of RF fingerprint identification.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 縮寫索引 IX 符號索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 論文貢獻 2 1.3 章節概要 2 第二章 文獻探討與研究背景介紹 3 2.1 標準 802.11 a/g 訊框規範 3 2.2 指紋特徵議題之文獻回顧 4 2.2.1 指紋特徵產生緣由 4 2.2.2 指紋特徵相關研究 6 2.3 特徵可攜性之文獻回顧 7 2.3.1 裝置對指紋特徵之影響 7 2.3.2 現有文獻之指紋特徵可攜性校正方法 8 第三章 改善指紋特徵可攜性之校正方法 13 3.1 裝置對訊號造成之影響 13 3.1.1 傳送端之影響 14 3.1.2 接收端之影響 16 3.2 訊號分布校正 19 3.2.1 接收訊號分布差異分析 20 3.2.2 三、四階動差校正 23 3.2.3 一、二階動差校正 26 3.3 特徵提取 28 3.3.1 時域特徵提取方法 29 3.3.2 頻域特徵提取方法 32 第四章 研究結果 36 第五章 結論與未來研究方向 44 參考文獻 45

[1] U. Meyer and S. Wetzel, "A man-in-the-middle attack on UMTS," presented at the Proceedings of the 3rd ACM workshop on Wireless security, Philadelphia, PA, USA, 2004. [Online]. Available: https://doi.org/10.1145/1023646.1023662.
[2] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, "A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends," Proceedings of the IEEE, vol. 104, no. 9, pp. 1727-1765, 2016, doi: 10.1109/JPROC.2016.2558521.
[3] C. Kolias, G. Kambourakis, and S. Gritzalis, "Attacks and Countermeasures on 802.16: Analysis and Assessment," IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 487-514, 2013, doi: 10.1109/SURV.2012.021312.00138.
[4] K. H. M. Wong, Z. Yuan, J. Cao, and S. Wang, "A dynamic user authentication scheme for wireless sensor networks," in IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06), 5-7 June 2006 2006, vol. 1, p. 8, doi: 10.1109/SUTC.2006.1636182.
[5] A. Aziz and W. Diffie, "Privacy and authentication for wireless local area networks," IEEE Personal Communications, vol. 1, no. 1, pp. 25-31, 1994, doi: 10.1109/98.295357.
[6] D. R. Raymond and S. F. Midkiff, "Denial-of-Service in Wireless Sensor Networks: Attacks and Defenses," IEEE Pervasive Computing, vol. 7, no. 1, pp. 74-81, 2008, doi: 10.1109/MPRV.2008.6.
[7] Y. Xiao, H. Chen, S. Yang, Y.-B. Lin, and D.-Z. Du, "Wireless Network Security," EURASIP Journal on Wireless Communications and Networking, no. 1, p. 532434, 2009, doi: 10.1155/2009/532434.
[8] I. K. Technologies. Concepts of Orthogonal Frequency Division Multiplexing (OFDM) and 802.11 WLAN. [Online] Available: http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/ofdm_basicprinciplesoverview.htm.
[9] "IEEE Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High Speed Physical Layer in the 5 GHz band," IEEE Std 802.11a-1999, pp. 1-102, 1999, doi: 10.1109/IEEESTD.1999.90606.
[10] N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, "A Review of Radio Frequency Fingerprinting Techniques," IEEE Journal of Radio Frequency Identification, vol. 4, no. 3, pp. 222-233, 2020, doi: 10.1109/JRFID.2020.2968369.
[11] A. Candore, O. Kocabas, and F. Koushanfar, "Robust stable radiometric fingerprinting for wireless devices," in 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, 27-27 July 2009 2009, pp. 43-49, doi: 10.1109/HST.2009.5224969.
[12] K. G. Gard, L. E. Larson, and M. B. Steer, "The impact of RF front-end characteristics on the spectral regrowth of communications signals," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 2179-2186, 2005, doi: 10.1109/TMTT.2005.848801.
[13] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, "Wireless device identification with radiometric signatures," presented at the Proceedings of the 14th ACM international conference on Mobile computing and networking, San Francisco, California, USA, 2008. [Online]. Available: https://doi.org/10.1145/1409944.1409959.
[14] Q. Xu, R. Zheng, W. Saad, and Z. Han, "Device Fingerprinting in Wireless Networks: Challenges and Opportunities," IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 94-104, 2016, doi: 10.1109/COMST.2015.2476338.
[15] C. Wang, Y. Lin, and Z. Zhang, "Research on Physical Layer Security of Cognitive Radio Network Based on RF-DNA," in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), 25-29 July 2017 2017, pp. 252-255, doi: 10.1109/QRS-C.2017.49.
[16] B. Danev and S. Capkun, "Transient-based identification of wireless sensor nodes," in 2009 International Conference on Information Processing in Sensor Networks, 13-16 April 2009 2009, pp. 25-36.
[17] J. Toonstra and W. Kinsner, "Transient analysis and genetic algorithms for classification," in IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings, 15-16 May 1995 1995, vol. 2, pp. 432-437, doi: 10.1109/WESCAN.1995.494069.
[18] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, "Wavelet Fingerprinting of Radio-Frequency Identification (RFID) Tags," IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4843-4850, 2012, doi: 10.1109/TIE.2011.2179276.
[19] Y. Lv, Y. Liu, F. Liu, J. Gao, K. Liu, and G. Xie, "Automatic Modulation Recognition of Digital Signals Using CWT Based on Optimal Scales," in 2014 IEEE International Conference on Computer and Information Technology, 11-13 Sept. 2014 2014, pp. 430-434, doi: 10.1109/CIT.2014.41.
[20] O. Ureten and N. Serinken, "Wireless security through RF fingerprinting," Canadian Journal of Electrical and Computer Engineering, vol. 32, no. 1, pp. 27-33, 2007, doi: 10.1109/CJECE.2007.364330.
[21] H. Yuan and A. Q. Hu, "Preamble-based detection of Wi-Fi transmitter RF fingerprints," Electronics Letters, vol. 46, pp. 1165-1167, 2010, doi: 10.1049/el.2010.1220.
[22] G. Baldini, R. Giuliani, and C. Gentile, "An assessment of the impact of IQ imbalances on the physical layer authentication of IoT wireless devices," in 2019 Global IoT Summit (GIoTS), 17-21 June 2019 2019, pp. 1-6, doi: 10.1109/GIOTS.2019.8766387.
[23] Y. Shi and M. A. Jensen, "Improved Radiometric Identification of Wireless Devices Using MIMO Transmission," IEEE Transactions on Information Forensics and Security, vol. 6, no. 4, pp. 1346-1354, 2011, doi: 10.1109/TIFS.2011.2162949.
[24] I. W. C. Suski, M. A. Temple, M. J. Mendenhall, and R. F. Mills, "Using Spectral Fingerprints to Improve Wireless Network Security," in IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, 30 Nov.-4 Dec. 2008 2008, pp. 1-5, doi: 10.1109/GLOCOM.2008.ECP.421.
[25] J. Bassey, D. Adesina, X. Li, L. Qian, A. Aved, and T. Kroecker, "Intrusion Detection for IoT Devices based on RF Fingerprinting using Deep Learning," in 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), 10-13 June 2019 2019, pp. 98-104, doi: 10.1109/FMEC.2019.8795319.
[26] L. Zong, C. Xu, and H. Yuan, "A RF Fingerprint Recognition Method Based on Deeply Convolutional Neural Network," in 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 12-14 June 2020 2020, pp. 1778-1781, doi: 10.1109/ITOEC49072.2020.9141877.
[27] L. Weng, J. Peng, J. Li, and Y. Zhu, "Message Structure Aided Attentional Convolution Network for RF Device Fingerprinting," in 2020 IEEE/CIC International Conference on Communications in China (ICCC), 9-11 Aug. 2020 2020, pp. 495-500, doi: 10.1109/ICCC49849.2020.9238868.
[28] E. Mattei et al., "Feature Learning for Enhanced Security in the Internet of Things," in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 11-14 Nov. 2019 2019, pp. 1-5, doi: 10.1109/GlobalSIP45357.2019.8969222.
[29] D. A. Knox and T. Kunz, "Wireless Fingerprints Inside a Wireless Sensor Network," ACM Trans. Sen. Netw., vol. 11, p. 30, 2015, doi: 10.1145/2658999.
[30] S. U. Rehman, K. W. Sowerby, S. Alam, I. T. Ardekani, and D. Komosny, "Effect of channel impairments on radiometric fingerprinting," in 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 7-10 Dec. 2015 2015, pp. 415-420, doi: 10.1109/ISSPIT.2015.7394371.
[31] J. L. Padilla, P. Padilla, J. F. Valenzuela-Valdés, J. Ramírez, and J. M. Górriz, "RF fingerprint measurements for the identification of devices in wireless communication networks based on feature reduction and subspace transformation," Measurement, vol. 58, pp. 468-475, 2014, doi: https://doi.org/10.1016/j.measurement.2014.09.009.
[32] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, "Design of a Hybrid RF Fingerprint Extraction and Device Classification Scheme," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 349-360, 2019, doi: 10.1109/JIOT.2018.2838071.
[33] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, "Wireless Physical-Layer Identification: Modeling and Validation," IEEE Transactions on Information Forensics and Security, vol. 11, no. 9, pp. 2091-2106, 2016, doi: 10.1109/TIFS.2016.2552146.
[34] X. Chen and X. Hao, "Feature Reduction Method for Cognition and Classification of IoT Devices Based on Artificial Intelligence," IEEE Access, vol. 7, pp. 103291-103298, 2019, doi: 10.1109/ACCESS.2019.2929311.
[35] Y. Li, L. Chen, J. Chen, F. Xie, S. Chen, and H. Wen, "A Low Complexity Feature Extraction for the RF Fingerprinting Process," in 2018 IEEE Conference on Communications and Network Security (CNS), 30 May-1 June 2018 2018, pp. 1-2, doi: 10.1109/CNS.2018.8433156.
[36] H. J. Patel, M. A. Temple, and R. O. Baldwin, "Improving ZigBee Device Network Authentication Using Ensemble Decision Tree Classifiers With Radio Frequency Distinct Native Attribute Fingerprinting," IEEE Transactions on Reliability, vol. 64, no. 1, pp. 221-233, 2015, doi: 10.1109/TR.2014.2372432.
[37] S. Wang, L. Peng, H. Fu, A. Hu, and X. Zhou, "A Convolutional Neural Network-Based RF Fingerprinting Identification Scheme for Mobile Phones," in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 6-9 July 2020 2020, pp. 115-120, doi: 10.1109/INFOCOMWKSHPS50562.2020.9163058.
[38] T. J. Bihl, K. W. Bauer, M. A. Temple, and B. Ramsey, "Dimensional reduction analysis for Physical Layer device fingerprints with application to ZigBee and Z-Wave devices," in MILCOM 2015 - 2015 IEEE Military Communications Conference, 26-28 Oct. 2015 2015, pp. 360-365, doi: 10.1109/MILCOM.2015.7357469.
[39] S. U. Rehman, K. Sowerby, and C. Coghill, "Analysis of receiver front end on the performance of RF fingerprinting," in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 9-12 Sept. 2012 2012, pp. 2494-2499, doi: 10.1109/PIMRC.2012.6362777.
[40] S. U. Rehman, K. Sowerby, C. Coghill, and W. Holmes, "The analysis of RF fingerprinting for low-end wireless receivers with application to IEEE 802.11a," in 2012 International Conference on Selected Topics in Mobile and Wireless Networking, 2-4 July 2012 2012, pp. 24-29, doi: 10.1109/iCOST.2012.6271285.
[41] S. U. Rehman, K. W. Sowerby, and C. Coghill, "Analysis of impersonation attacks on systems using RF fingerprinting and low-end receivers," Journal of Computer and System Sciences, vol. 80, no. 3, pp. 591-601, 2014, doi: https://doi.org/10.1016/j.jcss.2013.06.013.
[42] G. Baldini and G. Steri, "A Survey of Techniques for the Identification of Mobile Phones Using the Physical Fingerprints of the Built-In Components," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1761-1789, 2017, doi: 10.1109/COMST.2017.2694487.
[43] S. U. Rehman, K. W. Sowerby, S. Alam, and I. Ardekani, "Portability of an RF fingerprint of a wireless transmitter," in 2014 IEEE Conference on Communications and Network Security, 29-31 Oct. 2014 2014, pp. 151-156, doi: 10.1109/CNS.2014.6997481.
[44] G. Baldini, R. Giuliani, C. Gentile, and G. Steri, "Measures to Address the Lack of Portability of the RF Fingerprints for Radiometric Identification," in 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 26-28 Feb. 2018 2018, pp. 1-5, doi: 10.1109/NTMS.2018.8328703.
[45] K. Merchant and B. Nousain, "Toward Receiver-Agnostic RF Fingerprint Verification," in 2019 IEEE Globecom Workshops (GC Wkshps), 9-13 Dec. 2019 2019, pp. 1-6, doi: 10.1109/GCWkshps45667.2019.9024574.
[46] K. Merchant and B. Nousain, "Enhanced RF Fingerprinting for IoT Devices with Recurrent Neural Networks," in MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM), 12-14 Nov. 2019 2019, pp. 590-597, doi: 10.1109/MILCOM47813.2019.9021080.
[47] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, "Optimum receiver design for wireless broad-band systems using OFDM. I," IEEE Transactions on Communications, vol. 47, no. 11, pp. 1668-1677, 1999, doi: 10.1109/26.803501.
[48] C.-L. Liu, "Impacts of I/Q imbalance on QPSK-OFDM-QAM detection," IEEE Transactions on Consumer Electronics, vol. 44, no. 3, pp. 984-989, 1998, doi: 10.1109/30.713223.
[49] B. Razavi, "Design considerations for direct-conversion receivers," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 428-435, 1997, doi: 10.1109/82.592569.
[50] J. M. Bland and D. G. Altman, "Statistics Notes: Transforming data," Bmj, vol. 312, no. 7033, p. 770, 1996, doi: 10.1136/bmj.312.7033.770 %J BMJ.
[51] M. S. Bartlett, "The Square Root Transformation in Analysis of Variance," Supplement to the Journal of the Royal Statistical Society, vol. 3, no. 1, pp. 68-78, 1936, doi: 10.2307/2983678.
[52] M. F. Freeman and J. W. Tukey, "Transformations Related to the Angular and the Square Root," The Annals of Mathematical Statistics, vol. 21, no. 4, pp. 607-611, 1950. [Online]. Available: http://www.jstor.org/stable/2236611.
[53] M. Speth, S. Fechtel, G. Fock, and H. Meyr, "Optimum receiver design for OFDM-based broadband transmission .II. A case study," IEEE Transactions on Communications, vol. 49, no. 4, pp. 571-578, 2001

無法下載圖示 全文公開日期 2024/10/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE