簡易檢索 / 詳目顯示

研究生: 陳韋伶
Wei-Ling Chen
論文名稱: 線性含氮雜環共軛高分子作為有機催化劑在二氧化碳光催化還原之應用
N-heterocyclic Linear Conjugated Polymer as Organocatalysts on Photocatalytic CO2 Reduction
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 陳志堅
Jyh-Chien Chen
蘇威年
Wei-Nien Su
鍾博文
Po-Wen Chung
羅承慈
Chen-Tsyr Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 線性可溶共軛高分子偶氮結構光催化劑固-氣反應系統
外文關鍵詞: Linear soluble conjugated polymer, Azo structure, Solid−Gas interface photoreaction
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用Biphenyl (BP)、含氮雜環Benzo[c]cinnoline (BZC) 和Dibenzothiophene-S,S-dioxide (DBTO) 作為受體和3-Decylthiophene (3DT) 作為施體,經Stille coupling聚合出一系列可溶於常見有機溶劑 (如Chloroform、Tetrahydrofuran等) 的線性共軛高分子BP3DT、BZC3DT及DBTO3DT。BZC的偶氮官能基 (-N=N-) 提升結構的拉電子能力和平面性,使電荷在主鏈上傳遞的效率更高。且更多的氮原子和更多的孤對電子增加了材料在CO2還原系統中的活性位點,經光電性值測試,BZC3DT相較於BP3DT,激子具有較長的lifetime,增加與CO2反應的機率,同時具有更低的電荷轉移電阻和更好的電荷遷移,這些性值使BZC3DT在光催化系統中有不錯的還原效率。接有長側鏈的3DT在結構中做為施體,可以增加結構的溶解性,讓材料可以在溶液中做加工,並可以很好的沉積在多孔基材上,增加光催化劑與CO2的接觸面積,進而提升光催化活性。將三種高分子應用於固-氣相光催化CO2還原系統,在沒有加入任何助催化劑和犧牲劑的環境下,DBTO3DT表現出最大的CO產率 (38 μmol g−1 h−1),加入犧牲劑後效率更提升了10倍以上 (429 μmol g−1 h−1),同時,在結構中導入 -N=N- 官能基,提升BZC3DT的平面性及較廣的可見光吸收範圍,無論是在光電性值或是光催化效率 (329 μmol g−1 h−1),都達到和DBTO3DT近似的結果。


In this work, we reported using biphenyl (BP), nitrogen-containing heterocyclic benzo[c]cinnoline (BZC) and dibenzothiophene-S,S-dioxide (DBTO) as acceptor and 3-decylthiophene (3DT) as donor to synthesize a series of soluble linear conjugated polymers. Azo functional group (-N=N-) of BZC have good electron-pulling ability, and nitrogen atoms with lone pairs increased the active sites in CO2 reduction system. According to the photoelectrochemical properties test, compared with BP3DT, BZC3DT have a longer PL lifetime, which increases the probability of reacting with CO2, and has lower charge transfer resistance and better charge migration. These properties make BZC3DT have good reduction efficiency in the CO2 photoreduction. The 3DT with side chains acts as a donor in the structure, which can increase the solubility of the structure, allow the material to be processed in the solution. Furthermore, the solution processability of the linear polymer allows the incorporation of porous substrates, which improve the reaction interface. Polymers were applied to the solid-gas phase photocatalytic CO2 reduction system. In the absence of cocatalysts and sacrificial agents, DBTO3DT exhibits the greatest CO production rate of 38 μmol g−1 h−1, and the efficiency was increased by more than 10 times (429 μmol g−1 h−1) after adding the sacrificial agent. On the other hand, introduce -N=N- functional groups into the structure could improve the planarity and electron-pulling ability of BZC3DT, whether in light absorption capacity, photoelectricity value or photocatalytic efficiency (329 μmol g−1 h−1), both achieve the same effect as DBTO3DT.

致謝 .......... I 摘要 ..........III Abstract ........... IV 目錄...........V Figure 索引...........VIII Scheme 索引 .......... XI Table 索引............XII 第一章 序論............1 1.1 前言..............1 1.2 光催化簡介.........2 1.3 光催化原理.........3 1.3.1 光催化反應步驟............4 1.3.2 多電子反應路徑............5 1.3.3 光催化過程的影響因素.........6 1.3.4 固-氣系統..........8 1.4 基礎理論.............9 1.4.1 能帶理論...........9 1.4.2 共軛高分子之發展.............11 1.4.3 共軛高分子之導電機制.........11 1.5 文獻回顧...............13 1.5.1 含碸官能基 (O=S=O) 相關文獻..............13 1.5.2 含氮雜環相關文獻................18 1.5.3 研究動機......................23 第二章 實驗.........................24 2.1 實驗儀器與設備..................24 2.2 實驗藥品......................26 2.3 單體合成......................28 2.3.1 2,5-dibromo-3-decylthiophene (M1)......................28 2.3.2 4,4'-dibromo-2,2'-dinitrobiphenyl (4)..................29 2.3.3 3,8-dibromobenzo[c]cinnoline (5).......................30 2.3.4 3,8-bis(tributylstannyl)benzo[c]cinnoline (M3)..............31 2.3.5 3,7-bis(tributylstannyl)dibenzo[b,d]thiophene 5,5-dioxide (M4) .........32 2.4 高分子合成.......................33 2.4.1 BP3DT 合成.....................33 2.4.2 BZC3DT 合成....................34 2.4.3 DBTO3DT 合成...................34 2.5 光催化 CO2 還原實驗...............35 2.5.1 光催化實驗流程..................35 2.5.2 產 CO 效率 (PCO) 之計算公式.................38 第三章 結果與討論..............................39 3.1 單體之合成與性質表徵........................39 3.2 高分子之合成與性質表徵......................47 3.3 高分子溶解度及分子量測試....................51 3.4 高分子之光學及電化學性質....................53 3.5 高分子構型模擬與能階分佈....................57 3.6 高分子光催化 CO2 還原效率...................59 3.7 高分子光電性質分析..........................63 3.8 同位素測量............................66 第四章 結論.....................69 參考文獻........................70

(1) Lynn, J.; Peeva, N. Communications in the IPCC’s Sixth Assessment Report cycle.
Clim Change 2021, 169, 18.
(2) Hurst, T. F.; Cockerill, T. T.; Florin, N. H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage. Energy Environ. Sci. 2012, 5, 7132-7150.
(3) Shit, S. C.; Shown, I.; Paul, R.; Chen, K.-H.; Mondal, J.; Chen, L.-C. Integrated nanoarchitectured photocatalysts for photochemical CO2 reduction. Nanoscale 2020, 12,
23301-23332.
(4) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277,
637-638.
(5) Hussain, M. K.; Iqbal, T. Critical Review on Modification of TiO2 for the Reduction of CO2. Research & Reviews:J Chem 7, 37-44.
(6) Bingham, S.; Daoud, W. A. Recent advances in making nano-sized TiO2 visible-light
active through rare-earth metal doping. J. Mater. Chem. A 2011, 21, 2041-2050.
(7) Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2
conversion to solar fuels. ACS Catal. 2016, 6, 7485-7527.
(8) Wang, S.-H.; Khurshid, F.; Chen, P.-Z.; Lai, Y.-R.; Cai, C.-W.; Chung, P.-W.; Hayashi, M.; Jeng, R.-J.; Rwei, S.-P.; Wang, L. Solution-Processable Naphthalene DiimideBased Conjugated Polymers as Organocatalysts for Photocatalytic CO2 Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chem. Mater. 2022, 34,
4955-4963.
(9) Yang, C.; Huang, W.; da Silva, L. C.; Zhang, K. A.; Wang, X. Functional conjugated
polymers for CO2 reduction using visible light. Chem. Eur. J 2018, 24, 17454-17458.
(10) Hou, Y.; Zhang, E.; Gao, J.; Zhang, S.; Liu, P.; Wang, J.-C.; Zhang, Y.; Cui, C.-X.; Jiang, J. Metal-free azo-bridged porphyrin porous organic polymers for visible-lightdriven CO2 reduction to CO with high selectivity. Dalton Trans. 2020, 49, 7592-7597.
(11) Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. A Metal‐Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible‐
Light‐Driven Reduction of CO2 with H2O. ChemSusChem 2020, 13, 1725-1729.
(12) Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent
organic frameworks as metal-free visible light photocatalysts for CO2 reduction with
H2O. Appl. Catal. B 2018, 239, 46-51.
(13) Barman, S.; Singh, A.; Rahimi, F. A.; Maji, T. K. Metal-free catalysis: a redox-active donor–acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J. Am. Chem. Soc. 2021, 143, 16284-16292.
(14) Wang, J.-l.; Ouyang, G.; Wang, D.; Li, J.; Yao, J.; Li, W.-S.; Li, H. Enhanced
photocatalytic performance of donor–acceptor-type polymers based on a thiophenecontained polycyclic aromatic unit. Macromolecules 2021, 54, 2661-2666.
(15) Villalva, M. G.; Gazoli, J. R.; Ruppert Filho, E. Comprehensive approach to
modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 2009,
24, 1198-1208.
(16) Walter, V.; Saska, M.; Franchi, A. Fast mutual relative localization of uavs using ultraviolet led markers. In ICUAS, 2018; IEEE: pp 1217-1226.
(17) Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for
photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev 2014, 43,
7520-7535.
(18) Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 reduction: from the electrochemical to
photochemical approach. Adv. Sci. 2017, 4, 1700194.
(19) Qin, D.; Zhou, Y.; Wang, W.; Zhang, C.; Zeng, G.; Huang, D.; Wang, L.; Wang, H.;
Yang, Y.; Lei, L. Recent advances in two-dimensional nanomaterials for
photocatalytic reduction of CO2: insights into performance, theories and perspective.
J. Mater. Chem. A 2020, 8, 19156-19195.
(20) Hu, X.; Guo, R.-t.; Chena, X.; Bi, Z.-x.; Wang, J.; Pan, W.-g. Bismuth-based Zscheme structure for photocatalytic CO2 reduction: A review. J. Environ. Chem. Eng.
2022, 108582.
(21) Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2021, 133, 21320-21342.
(22) Chen, P.; Zhang, Y.; Zhou, Y.; Dong, F. Photoelectrocatalytic carbon dioxide
reduction: fundamental, advances and challenges. Nat. Mater. 2021, 3, 344-367.
(23) Dilla, M.; Mateblowski, A.; Ristig, S.; Strunk, J. Photocatalytic CO2 Reduction under Continuous Flow High‐Purity Conditions: Influence of Light Intensity and H2O
Concentration. ChemCatChem 2017, 9, 4345-4352.
(24) Luo, J.; Zhang, S.; Sun, M.; Yang, L.; Luo, S.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with
remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811-9840.
(25) Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production.C. R. Chimie 2017, 20, 283-295.
(26) Zhao, X.; Yi, X.; Pan, W.; Wang, Y.; Luo, S.; Zhang, Y.; Xie, R.; Leung, D. Y. UV light-induced oxygen doping in graphitic carbon nitride with suppressed deep
trapping for enhancement in CO2 photoreduction activity. J Mater Sci Technol 2023,
133, 135-144.
(27) Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy 2017, 32, 359-366.
(28) Wang, S.; Hai, X.; Ding, X.; Jin, S.; Xiang, Y.; Wang, P.; Jiang, B.; Ichihara, F.; Oshikiri, M.; Meng, X. Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nat. Commun. 2020, 11, 1149.
(29) Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y. MgO-and Pt-promoted TiO2 as an
efficient photocatalyst for the preferential reduction of carbon dioxide in the
presence of water. ACS Catal. 2014, 4, 3644-3653.
(30) Wang, H.-N.; Zou, Y.-H.; Sun, H.-X.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coord Chem Rev 2021, 438, 213906.
(31) University, H. Chapter 12.6: Metals and Semiconductors. LibreTexts CHEMISTRY.
(32) Chiang, C.; Fincher Jr, C.; Park, Y.; Heeger, A.; Shirakawa, H.; Louis, E.; Gau, S.; MacDiarmid, A. G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1978, 40, 1472.
(33) Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev 2010, 39, 2354-2371.
(34) Mikhnenko, O. V.; Blom, P. W.; Nguyen, T.-Q. Exciton diffusion in organic
semiconductors. Energy Environ. Sci. 2015, 8, 1867-1888.
(35) 陳文章. 國立台灣大學陳文章教授授課講義. 網路資源.
(36) Yu, J.; Chang, S.; Xu, X.; He, X.; Zhang, C. The effect of single atom substitution (O, S or Se) on photocatalytic hydrogen evolution for triazine-based conjugated porous polymers. J. Mater. Chem. C 2020, 8, 8887-8895.
(37) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Visible‐light‐driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew.
Chem. Int. Ed. 2016, 55, 1792-1796.
(38) Dai, C.; Xu, S.; Liu, W.; Gong, X.; Panahandeh‐Fard, M.; Liu, Z.; Zhang, D.; Xue, C.; Loh, K. P.; Liu, B. Dibenzothiophene‐S,S‐dioxide‐based conjugated polymers:
highly efficient photocatalyts for hydrogen production from water under visible light. Small 2018, 14, 1801839.
(39) Lan, Z.-A.; Ren, W.; Chen, X.; Zhang, Y.; Wang, X. Conjugated donor-acceptor
polymer photocatalysts with electron-output “tentacles” for efficient hydrogen
evolution. Appl. Catal. B 2019, 245, 596-603.
(40) Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.-X. Effect of linking pattern of dibenzothiophene-S,S-dioxide-containing
conjugated microporous polymers on the photocatalytic performance.
Macromolecules 2018, 51, 9502-9508.
(41) Gao, X.; Shu, C.; Zhang, C.; Ma, W.; Ren, S.-B.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J.-X. Substituent effect of conjugated microporous polymers on the
photocatalytic hydrogen evolution activity. J. Mater. Chem. A 2020, 8, 2404-2411.
(42) Xie, P.; Han, C.; Xiang, S.; Jin, S.; Ge, M.; Zhang, C.; Jiang, J.-X. Toward highperformance dibenzo [g,p] chrysene-based conjugated polymer photocatalysts for
photocatalytic hydrogen production through donor-acceptor-acceptor structure
design. Chem. Eng. J. 2023, 459, 141553.
(43) Fu, Z.; Vogel, A.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Photocatalytic syngas production using conjugated organic polymers. J. Mater. Chem. A 2021, 9, 4291-4296.
(44) Sienkowska, M. J.; Farrar, J. M.; Zhang, F.; Kusuma, S.; Heiney, P. A.; Kaszynski, P. Liquid crystalline behavior of tetraaryl derivatives of benzo[c]cinnoline, tetraazapyrene, phenanthrene, and pyrene: the effect of heteroatom and substitution pattern on phase stability. J. Mater. Chem. 2007, 17, 1399-1411.
(45) Wu, H.-C.; Chen, J.-C.; Lin, H.-Z. UV-irradiation-enhanced photoluminescence
emission of polyfluorenes containing heterocyclic benzo[c]cinnoline moieties.
Macromolecules 2015, 48, 4373-4381.
(46) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Chen, T.; Xing, L. Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo[c]cinnoline moieties. J. Mater. Chem. C 2014, 2, 4835-4846.
(47) Lee, S.-W.; Chien, S.-H.; Chen, J.-C.; Wang, S.-H.; Wang, L.-Y.; Lai, B.-H.; Wang, C.-L. Synthesis and characterization of heterocyclic conjugated polymers containing planar benzo[c]cinnoline and tetraazapyrene structures for organic field-effect transistor application. Org. Electron. 2019, 66, 136-147.
(48) Desu, M.; Sharma, S.; Cheng, K.-H.; Wang, Y.-H.; Nagamatsu, S.; Chen, J.-C.;
Pandey, S. S. Controlling the molecular orientation of a novel diketopyrrolopyrrolebased organic conjugated polymer for enhancing the performance of organic fieldeffect transistors. Org. Electron. 2023, 113, 106691.
(49) Wang, Z.; Mao, N.; Zhao, Y.; Yang, T.; Wang, F.; Jiang, J.-X. Building an electron push–pull system of linear conjugated polymers for improving photocatalytic
hydrogen evolution efficiency. Polym. Bull. 2019, 76, 3195-3206.
(50) Li, L.; Lo, W.-y.; Cai, Z.; Zhang, N.; Yu, L. Donor–acceptor porous conjugated
polymers for photocatalytic hydrogen production: the importance of acceptor
comonomer. Macromolecules 2016, 49, 6903-6909.
(51) Chen, R.; Hu, P.; Xian, Y.; Hu, X.; Zhang, G. Incorporation of Sequence Aza‐
Substitution and Thiophene Bridge in Linear Conjugated Polymers Toward Highly
Efficient Photo‐Catalytic Hydrogen Evolution. Macromol. Rapid Commun. 2022, 43,
2100872.
(52) Sharma, P. P.; Wu, J.; Yadav, R. M.; Liu, M.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Nitrogen‐doped carbon nanotube arrays for high‐efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 2015, 127, 13905-13909.
(53) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Investigations on the electrochemical properties of new conjugated polymers
containing benzo[c]cinnoline and oxadiazole moieties. Polymer 2011, 52, 6011-
6019.
(54) Yang, G.; Hu, K.; Qin, Y. Cis/Cis-2,5-Dipropenylthiophene Monomers for HighMolecular-Weight Poly (2, 5-Thienylene Vinylene) S through Acyclic Diene
Metathesis Polymerization. J Polym Sci A : Polym Chem 2014, 52, 591-595.
(55) Liang, A.; Luo, M.; Liu, Y.; Wang, H.; Wang, Z.; Zheng, X.; Cao, T.; Liu, D.; Zhang, Y.; Huang, F. Novel yellow phosphorescent iridium complexes with
dibenzothiophene-S,S-dioxide-based cyclometalated ligand for white polymer lightemitting diodes. Dyes Pigm. 2018, 159, 637-645.
(56) Polander, L. E.; Romanov, A. S.; Barlow, S.; Hwang, D. K.; Kippelen, B.; Timofeeva, T. V.; Marder, S. R. Stannyl derivatives of naphthalene diimides and their use in oligomer synthesis. Org. Lett. 2012, 14, 918-921.
(57) Bryce, M. R. Tetrathiafulvalenes as π‐electron donors for intramolecular charge‐
transfer materials. Advanced Materials 1999, 11, 11-23.
(58) Panja, S. K.; Dwivedi, N.; Saha, S. Tuning the intramolecular charge transfer (ICT) process in push–pull systems: effect of nitro groups. RSC Adv. 2016, 6, 105786-
105794.
(59) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv.Mater. 2011, 23, 2367–2371.
(60) Wen, F.; Zhang, F.; Wang, Z.; Yu, X.; Ji, G.; Li, D.; Tong, S.; Wang, Y.; Han, B.; Liu, Z. Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO2 reduction with H2O to CO. Chem. Sci 2021, 12, 11548-
11553.
(61) Wang, L. j.; Wang, R. l.; Zhang, X.; Mu, J. l.; Zhou, Z. y.; Su, Z. m. Improved
photoreduction of CO2 with water by tuning the valence band of covalent organic
frameworks. ChemSusChem 2020, 13, 2973-2980.
(62) Schukraft, G. E.; Woodward, R. T.; Kumar, S.; Sachs, M.; Eslava, S.; Petit, C.
Hypercrosslinked polymers as a photocatalytic platform for visible‐light‐driven CO2
photoreduction using H2O. ChemSusChem 2021, 14, 1720-1727.
(63) Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open‐circuit voltage decay measurements.
ChemPhysChem 2003, 4, 859-864.
(64) Billo, T.; Fu, F. Y.; Raghunath, P.; Shown, I.; Chen, W. F.; Lien, H. T.; Shen, T. H.; Lee, J. F.; Chan, T. S.; Huang, K. Y. Ni‐nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 2018, 14, 1702928.
(65) Shown, I.; Samireddi, S.; Chang, Y.-C.; Putikam, R.; Chang, P.-H.; Sabbah, A.; Fu, F.-Y.; Chen, W.-F.; Wu, C.-I.; Yu, T.-Y. Carbon-doped SnS2 nanostructure as a highefficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169.
(66) Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372-7408.
(67) Hong, J.; Zhang, W.; Ren, J.; Xu, R. Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal. Methods 2013, 5, 1086-1097

無法下載圖示 全文公開日期 2025/08/23 (校內網路)
全文公開日期 2025/08/23 (校外網路)
全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE