簡易檢索 / 詳目顯示

研究生: 廖東昇
Tung-Sheng Liao
論文名稱: 飛灰與強塑劑對高性能混凝土工程性質影響之研究
The Effect of Fly Ash and Superplasticizer on the Engineering Properties of High Performance Concrete
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 許貫中
Kung-Chung Hsu
彭耀南
none
顏聰
none
蘇南
none
林仁益
none
沈得縣
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 188
中文關鍵詞: 耐久性經濟性高性能混凝土飛灰安全性強塑劑
外文關鍵詞: durability, safety, fly ash, superplasticizer, economy, High Performance Concrete
相關次數: 點閱:331下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要分成三部分,第一部分探討飛灰之類型與品質對高性能混凝土工程性質之影響,第二部分探討強塑劑之類型及不同種類強塑劑之混和對高性能混凝土工程性質之影響,第三部分探討強塑劑與飛灰聯合作用對高性能混凝土耐久性質之影響並與傳統混凝土單獨添加強塑劑與飛灰之情形比較分析。透過坍度、坍流度、初終凝、抗壓強度、超音波、電阻、電滲、SEM等試驗進行研究。試驗結果顯示,飛灰燒失量、表面電位及飛灰球數會影響混凝土之工作性,且飛灰燒失量愈高對混凝土之安全性、耐久性及經濟性也會產生不良的影響。新拌性質原則上在同一配比之下,強塑劑減水率愈高,混凝土流動時間愈短。硬固性質則隨強塑劑產生空氣含量之高低有關,空氣含量愈高對於混凝土之安全性與耐久性愈不好。另同質性強塑劑混和對高性能混凝土工作性、安全性及耐久性影響不大;不同質性強塑劑混和則會嚴重影響混凝土之工作性,但對混凝土之安全性與耐久性影響不大。添加強塑劑減水與添加飛灰填塞孔隙可個別增進混凝土之耐久性,並解析緻宻配比法設計高性能混凝土時同時添加飛灰與強塑劑耐久性設計之策略,結果顯示水膠比愈低,用水量愈低,飛灰量愈高,混凝土之耐久性愈佳。


    This dissertation is mainly divided into three parts: the first part is to investigate the effects of the type and the quality of fly ash (FA) on engineering properties of High Performance Concrete (HPC), the second part is to investigate the effects of the type and blended superplasticizer (SP) on the engineering properties of HPC, the third part is to comparatively analyze that addition of both FA and SP as well as single addition of SP and FA as traditional concrete does on the durability of HPC. The tests include slump, slump flow, initial and final settmg time, compressive strength, ultrasonic pulse velocity, electrical resistivity, micrograph observation, etc. The result indicates that the LOI of FA, electric potential and number of FA particle do influence the workability of concrete. Moreover, the LOI of FA will detrimentally affect the safety, durability and economy of concrete. In principle, the fresh property with the same mixture proportion the higher the water reduction rate the shorter the flowing time of concrete. The hardened concrete properties are affected by air content in relation to SP, the higher the air content the worse the safety and durability of concrete. Also, the blended SP with the same chemical basis will be compatible each other and shows similar workability, safety and durability as one SP only. Blended SP with different chemical basis interferes with each other and has detrimental affect on workability, but has a little effect on safety and durability of concrete. Addition of SP to reduce water or addition of FA to fill porosity will increase the durability of concrete, and addition of both SP and FA together by densified mixture design algorithm (DMDA) is the best strategy for concrete durability. The result shows the lower the water-to-cementitious material ratio the lower the water content, the higher the FA content the better the concrete durability.

    中文摘要-------------------------------------------------I 英文摘要-----------------------------------------------------III 誌謝-----------------------------------------------------V 總目錄------------------------------------------------------- V I 表目錄-------------------------------------------------- XII 圖目錄------------------------------------------------- XIV 第一章 緒論---------------------------------------------1 1- 1研究動機------------------------------------------1 1- 2研究目的------------------------------------------2 1- 3研究方法與範圍------------------------------------2 1-4研究流程-------------------------------------------3 第二章 文獻回顧------------------------------------5 2-1 強塑劑種類與機理介紹------------------------------5 2-1-1強塑劑種類------------------------------------5 2-1-2 強塑劑之分散機制------------------------------7 2-1-3 強塑劑的用量對混凝土性質的影響--------------10 2-2飛灰品質對混凝土性質之影響---------------------11 2-2-1飛灰性質之介紹-----------------------------12 2-3混凝土耐久性之探討-----------------------------14 第三章 試驗計畫---------------------------------27 3-1試驗材料-----------------------------------------27 3-2試驗變數與方法-----------------------------------28 3-2-1試驗變數-------------------------------------28 3-2-2試驗方法-------------------------------------28 3-3試驗項目及設備-----------------------------------32 3-3-1強塑劑基本試驗-------------------------------32 3-3-2 水泥、爐石及飛灰比重試驗----------------------36 3-3-3骨材試驗-------------------------------------36 3-3-4水泥漿試驗-----------------------------------37 3-3-5水泥砂漿試驗---------------------------------38 3-3-6混凝土試驗-----------------------------------39 第四章 飛灰品質對高性能混凝土工程性質之影響---------61 4-1前言---------------------------------------------61 4-2試驗變數-----------------------------------------61 4-3試驗配比-----------------------------------------62 4-4結果分析-----------------------------------------62 4-5結論與建議---------------------------------------67 第五章 商用強塑劑種類對高性能混凝土工程性質之影響--------------------------------------------75 5-1前言---------------------------------------------75 5-2試驗變數-----------------------------------------76 5-3試驗結果-----------------------------------------76 5-4結論與建議---------------------------------------84 第六章 不同種類商用強塑劑混合對高性能混凝土工程性質之研究---------------------------------97 6-1前言--------------------------------------------97 6-2試驗變數及項目----------------------------------97 6-3試驗結果----------------------------------------98 6-3-1新拌性質-------------------------------------98 6-3-2硬固性質------------------------------------104 6-4結論與建議--------------------------------------106 第七章 新型聚羧酸對高性能混凝土工程性質之影響----139 7-1 新型強塑劑聚合反應------------------------------139 7-2 強塑劑對水泥之吸附量---------------------------------140 7-3強塑劑量對水泥砂漿流度影響----------------------140 7-4 PMAMP對高性能混凝土性質之影響-------------------142 7-5結論--------------------------------------144 第八章 飛灰與強塑劑增進高性能混凝土耐久性質之探討------------------------------------------------153 8-1前言--------------------------------------------153 8-2實驗變數與試驗項目------------------------------153 8-3試驗結果----------------------------------------154 8-3-1傳統混凝土配比------------------------------154 8-3-2高性能混凝土配比----------------------------156 8-4結論--------------------------------------------159 第九章 綜合討論----------------------------------168 9-1安全性---------------------------------------------169 9-2耐久性--------------------------------------------171 9-3工作性-----------------------------------------172 9-4經濟性-----------------------------------------174 9-5生態性----------------------------------------------176 參考文獻------------------------------------------------178 作者簡介------------------------------------------------185

    1.Hewlett., PC., “Concept of Superplasticized Concrete,” Superplasticizers in Concrete, ACI, SP-62, pp. 1-9(1979).
    2.Meyer, A., “Experiences in the Use of Superplasticizers in Germany,” Superplasticizers in Concrete, ACI, SP-62, pp. 21-31(1979).
    3.Hattori., K., “Experiences with Mighty Superplasticizers in Japan,” Superplasticizers in Concrete, ACI, SP-62, pp. 37-46(1979).
    4.Holbek, K., and Janis I. Skrestins., “Some Experiences with the Use of Superplasticizers in the Precast Concrete Industry in Canada,” Superplasticizers in Concrete, ACI, SP-62, pp. 87-96(1979).
    5.Hewlett, P.C., “Experiences in the use of Superplasticizers in England,” Superplasticizers in Concrete, ACI, SP-62, pp. 101-110(1979).
    6.W. G. Ryan and R.L. Munn., “Some Recent in Australia with Superplasticizers Admixtures,” Superplasticizers in Concrete, ACI, SP-62, pp. 123-129(1979).
    7.Aitcin, P.C., and Neville, A., “High performance concrete demystified,” Concrete International, Vol. 15, No. 1, pp. 21-26(1993).
    8.王檻勝(李釗指導),「水泥性質對強塑劑使用成效影響之研究」,碩士論文,國立中央大學土木工程研究所,民國81年。
    9.M. R. Rixom and N. P. Mailvaganam, “Chemical Admixtures for Concrete”, London New York, pp. 5-10(1986).
    10.V. S. Ramachandran, V. M. Malhotra, C. Jolicoeur, and N. Spiratos, “Superplasticizers : properties and application in concrete”, CANMET, pp.49-50( 1998).
    11.M. R Rixom and N. P. Mailvaganam, “Chemical Admixtures for Concrete”, London New York, pp. 13-14,(1986).
    12.M. Collepardi, “Admixtures Use to Enhance Placing Characteristics of Concrete”, Cement Concrete Composites, Vol.20, pp. 103-112(1998).
    13.P. K. Mehta, “Concrete structure ,Material and Properties”, Prentice-Hall, New Jersey(1993).
    14.蘇南、李偉卿,「強塑劑經磁場處理對混凝土工作性之影響」, 強塑劑於混凝土應用,台灣營建研究院叢書,民國90年。
    15.郭文田(李釗指導),「添加強塑劑對水泥材料水化及早期行為之影響」, 國立中央大學土木研究所博士論文,民國89年。
    16.Decker, E.A., and Fleming, J.P., Admixture for Flowing Concrete in Chemical Admixture for Concrete, E. and F.X., SP on New York(1978)
    17.Lim, G.G., Gong, S.S., Kim, D.S., Lee, B.J., and Rhb, J.S., “Slump Loss Control of Cement Paste by Adding polycarboxylic Type Slump-Releasing Dispersant”, Cement Concrete Research, Vol.29, pp. 197~203(2000).
    18.I. D. Morrison, S. Ross, “Colloidal dispersions-suspensions, emulsions, and foams”, John Wiley & Sons Inc., N. Y., USA(2002).
    19.H. Uchikawa, S. Hanehara, D. Sawaki, “The role of steric repulsive forces in paste prepared with organic admixture”, Cement Concrete Research, Vol. 27, pp. 37~50(1997).
    20.K. Yamada, T. Takahashi, S. Hanehara, M. Matsuhisa, “Effects of the chemical structure on the properties of polycarboxylate type superplasticizer”, Cement Concrete Research, Vol.30, pp. 197~203(2000).
    21.S. Chandra, J. Björnström, “Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars--Part II”, Cement Concrete Research, Vol.32, pp. 1613~1619(2002).
    22.J. Davies, J. G. P. Binner, “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions”, J. Eur. Ceram. Soc., Vol.20, pp. 1539~1553(2000).
    23.陳慶宏(許貫中指導),「強塑劑於高性能混凝土之效能評估」,碩士論文,國立台灣師範大學化學系,民國89年。
    24.Mehta, P.K.,Monteiro, P.J.M., “Concrete Structure, Properties, and Materials”, (2nd ed),Prentice Hall International Series(1993).
    25.黃兆龍,「混凝土性質與行為」,詹氏書局,民國92年。
    26.Hwang, C.L., J.J. Liu, L.S. Lee, F.Y. Lin, “Densified Mixture Design Algorithm and Early Properties of High Performance Concrete,” Journal of the Chinese Civil and Hydraulic Engineering Vol.8, No.2, pp. 207~219(1996).
    27.黃兆龍,陳建成,江明英,郭金祥,「拌和用水量對混凝土工程性質之影響」,中國土木水利工程學刊,第九卷,第四期,第561~570頁,民國86年。
    28.黃兆龍,湛淵源,盧雪卿,「水固比(W/S)對混凝土體積穩定性的影響」,中國土木水利工程學刊,第十二卷,第四期,第831~838頁,民國89年。
    29.黃兆龍,盧雪卿,「漿量及水量對混凝土體積穩定性之影響」,中國土木水利工程學刊,第十二卷,第三期,第621~626頁,民國89年。
    30.Alain Bilodeau and V. Mohan Malhotra, “High-Volume Fly Ash System: Concrete Solution for Sustainable Development” ACI Materials Journal, Vol. 97,No. 1, pp. 41-48 (2000).
    31.Young-Soo Yoon, Jong-Pil Won, Sang-kyun Woo, young-chul Song, “Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application,” Cement and Concrete Research, Vol. 32, pp. 23-30(2002).
    32.黃兆龍,湛淵源,林治強,「飛灰燒失量對高流動化高強度混凝土工程性質之影響」,中國土木水利工程學刊,第12卷,第2期,第217~223頁,民國89年。
    33.林平全,「飛灰混凝土」, 科技圖書股份有限公司,民國78年。.
    34.K. Wesche, “Fly ash in concrete--properties and performance”, E & FN Spon, N. Y., USA(1991).
    35.林炳炎,「飛灰、矽灰、高爐爐石用在混凝土中」,三民書局, 民國82年。
    36.E. Rossouw, J. Kruger, “Review of specifications for additions for use in concrete”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, Vol. 1, pp. 201~220, Amer. Concr. Ins., Detroit, USA(1983).
    37.V. R. Sturrup, R. D. Hooton, T. G. Glenddnning, “Durability of fly ash concrete”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, Vol.1 , pp. 71~86, Amer. Concr. Ins., Detroit, USA(1983).
    38.H. Onga, S. Nagatak, “Effect of fly ash on alkali-aggregate reaction in marine environment”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-132, Vol.1, pp. 577~590, Amer. Concr. Ins., Detroit, USA(1992).
    39.S. Daimond, “Intimate association of coal particles and inorganic spheres in fly ash”, Cement Concrete Research, Vol.12, pp. 405~407(1982).
    40.Roland Bleszynski, R. Doug Hooton, Michael D. A. Thomas, and Chris A. Rogers,“Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag: Laboratory and Outdoor Exposure Site Studies”, ACI Materials Journal, V. 99,No. 5,Sep-Oct, pp. 499-508(2002).
    41.P. S. Mangat and J. M. Khatib, “Influence of Fly ash, Silica Fume, and Slag on Sulfate Resistance of Concrete” ACI Materials Journal, V. 92,No. 5,Sep-Oct, pp. 542-552(1995).
    42.Michael D. A. Thomas, Phil B. Bamforth, “Modelling chloride diffusion in concrete Effect of fly ash and slag” Cement and Concrete Research, Vol 29 , pp. 487-495(1999).
    43.S. C. Pal, Abhijit Mukherjee, and S. R. Pathak, “ Corrosion Behavior of Reinforcement in Slag Concrete”, ACI Materials Journal, Vol. 99,No. 6,Nov-Dec, pp. 521-527(2002).
    44.Mindess, S. and J. F. Young, Concrete, Prentice-Hall, Englewood Cliff, N. J.(1981).
    45.Mehta, P. K., Concrete-Structure, Properites and Materials, Prentice-Hall, Englewood Cliff, N. J.(1986).
    46.kosmatra, S. H., and W. C. Panarese, Design and Control of Concrete Mixtures, 13th ed., Portland Cement Association(1988).
    47.Building Code Requirements for Structural Concrete, ACI 319-95, ACI, Detroit(1995).
    48.Martin, H., and Schiessl, P., “The influence of time and environmental conditions on the corrosion of deformed bars in cracked concrete”, Preliminary Report of RIlEM International Symposium on the Durability of Concrete, Vol.II, Prague(1969).
    49.Buenfeld, N. R., J. B. Newman and C. L. Page, “The Resistivity of Mortar Imeersed in Sea-Water”, Cement and Concrete Research, Vol. 16, pp. 511-524(1986).
    50.Cavalier, P. G. and P. R. Vassie, “Investigation and Repair of Reinforcement Corrosion in a Bridge Deck”, Proc. Inst. Of Civil Engineers, Vol.70, Part 1, August ,pp. 460-480(1981).
    51.Dunaszegi L., “High performance concrete-a key component in the design of the Confederation Bridge,” Beton Concrete Canada, Vol. 1., No. 3,Dec., pp. 1-3(1996).
    52.黃兆龍,「打造歷久彌堅的混凝土結構物-談國際金融中心的混凝土設計,高性能混凝土設計及應用研討會,台灣台北,第133~168頁,民國88年。
    53.湛淵源,黃兆龍,「混凝土電阻性質與氯離子電滲型為之探討」,中國土木水利工程學刊,第13卷,第2期,第293~302頁,民國90年。
    54.葉一賢(許貫中指導),「新型聚羧酸系強塑劑的合成與應用」,碩士論文,國立台灣師範大學化學系,民國91年。
    55.黄宏隆(許貫中指導),「新型聚羧酸系強塑劑對含飛灰水泥漿體流動行為的影響」,碩士論文,國立台灣師範大學化學系,民國92年。
    56.L. Coppola, E. Erali, R. Troli, M. Collepardi, “Blending of Acrylic Superplasticizer with Napthalene, Melamine or Lignosulfonate- Based Polymers”, in: V. M. Malhotra (Eds.), Proceedings of 5th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Rome, pp. 203-224(1997).

    QR CODE