簡易檢索 / 詳目顯示

研究生: 黃晟祐
Chen-Yu Huang
論文名稱: 大氣常壓微電漿合成表面官能化共價有機框架應用於光催化降解有機汙染物
Plasma Synthesis of Surface-Functionalized Covalent Organic Frameworks for Photocatalytic Degradation of Organic Pollutant
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 劉沂欣
Yi-Hsin Liu
蕭偉文
Wesley Wei-Wen Hsiao
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 89
中文關鍵詞: 共價有機框架大氣常壓微電漿有機染劑雙酚 A光催化
外文關鍵詞: covalent organic frameworks, plasmas, organic dyes, bisphenol A, photocatalysis
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,水中有機污染物的濃度逐漸增加,有機染料和雙酚 A(BPA)是其中具有代表性和引人關注的化合物。BPA 是一種強效的內分泌干擾物,在工業廢水中常見,因其用於聚碳酸酯塑料和環氧樹脂中,對環境構成重大威脅。
    傳統的水處理方法,如過濾和絮凝,通常無法有效去除這些有機且持久的污染物。本研究探索了一種創新方法,利用大氣壓微電漿快速且環境友好地合成表面官能化的共價有機框架(COFs)光催化劑。在第一個應用中,我們對不同的有機染料進行了實驗,發現對於結晶紫、亞甲基藍和孔雀石綠等有機染料,在 50 ppm 的染料濃度下,可以在 1 小時內達到 99%的去除效率。在第二個應用中,對水中 50 ppm 的 BPA 進行光催化降解,TAPB_BTCA COFs在僅 1 小時內就達到了驚人的 99%去除效率,顯示了它們在應對 BPA 污染挑戰方面的有效性。這一突破不僅展示了大氣壓微電漿進行綠色合成的潛力,還突顯了表面官能化的 COFs 作為高效光催化劑在水處理過程中降解有機污染物的應用前景。這些發現有助於持續努力開發可持續且有效的策略,以減輕工業污染物對環境的影響。


    In recent years, the concentration of organic pollutants in water has been steadily increasing, with organic dyes and bisphenol A (BPA) being the representative and concerning compounds. BPA is a potent endocrine disruptor commonly found in industrial wastewater because it is used in polycarbonate plastics and epoxy resins and poses a significant threat to the environment.
    Traditional water treatment methods such as filtration and coagulation often fail to effectively remove these organic and persistent pollutants. This study explores an innovative approach for the rapid and environmentally friendly synthesis of surface-functionalized covalent organic framework (COFs) photocatalysts using atmospheric-pressure microplasmas. In terms of the first application of photodegradation organic dyes, we experimented with different organic dyes and found that for Crystal Violet, Methylene Blue, Malachite Green could reach 99% removal efficiency within 1 h at dye concentration of 50 ppm. In the second application, photocatalytic degradation of 50 ppm BPA in water, TAPB_BTCA COFs achieved a remarkable 99% removal efficiency within just 1 h. This breakthrough not only demonstrates the potential of atmospheric-pressure microplasma for green synthesis, but also highlights the promising application of surface-functionalized COFs as efficient photocatalysts for degrading organic pollutants in water treatment processes. These findings contribute to ongoing efforts to develop sustainable and effective strategies to mitigate the environmental impacts of industrial pollutants.

    Abstract i 摘要 ii 致謝 iii Tables of Contents iv List of Figures viii List of Tables xiv 1. Introduction 1 1.1 The Influence of Organic Pollutant 1 1.1.1 Pharmaceutical Contamination 1 1.1.2 Agricultural Pesticide 2 1.1.3 Industrial Dyes 3 1.1.4 Industrial Chemical Intermediates and Raw Materials 4 1.2 Photocatalysis 6 1.3 Covalent Organic Frameworks 8 1.3.1 Solvothermal synthesis 11 1.3.2 Microwave synthesis 13 1.3.3 Ionothermal synthesis 13 1.3.4 Mechanochemical synthesis 14 1.3.5 Sonochemical synthesis 15 1.3.6 Room temperature solution synthesis 16 1.3.7 Interfacial synthesis 18 1.4 Atmospheric Pressure Microplasma Technology 20 2. Experiment Section 25 2.1 Materials and chemicals 25 2.1.1 Synthesis of Covalent Organic Frameworks 25 2.1.2 Organic Dyes adsorption and photodegradation 25 2.1.3 Bisphenol A photocatalysis 25 2.1.4 Reactive species scavengers experiment 26 2.1.5 Investigation of Mechanisms in Microplasma Synthesis 26 2.2 Experimental setup 26 2.2.1 Synthesis of Sonication COFs 26 2.2.2 Synthesis of Microplasma COFs 26 2.2.3 Purification of the COFs 28 2.3 Product Yield of Different COFs 29 2.4 Investigation of Mechanisms in Microplasma Synthesis 29 2.5 Characterization 30 2.5.1 X-ray diffraction (XRD) 30 2.5.1 Ultraviolet-visible spectroscopy (UV-Vis) 30 2.5.2 Photoluminescence spectroscopy (PL) 31 2.5.3 Raman spectroscopy 32 2.5.4 Fourier-transform infrared spectroscopy (FTIR) 32 2.5.5 X-ray photoelectron spectroscope (XPS) 33 2.5.6 Ultraviolet Photoelectron Spectroscopy (UPS) 33 2.5.7 Thermogravimetric analysis (TGA) 33 2.5.8 Scanning Electron Microscopy (SEM) 34 2.5.9 Transmission electron microscope (TEM) 34 2.5.10 N2 adsorption-desorption isotherms 35 2.5.11 Particle Size & Zeta Potential Analyzer 35 2.6 Adsorption f Organic Dyes 35 2.7 Photocatalysis of Organic Dyes 35 2.8 Photodegradation of Bisphenol A 36 2.9 Reactive species scavengers experiment 37 2.10 Reaction pathway study 37 2.11 Total Organic Carbon (TOC) analyzer 37 3. Result and Discussion 38 3.1 Synthesis of COFs 38 3.2 Product Yield of Different COFs 38 3.3 X-ray diffraction (XRD) 39 3.4 Ultraviolet–visible diffuse reflectance spectroscopy (UV/Vis DRS) 43 3.5 Photoluminescence spectroscopy (PL) 46 3.6 Raman spectroscopy 48 3.7 Fourier-transform infrared spectroscopy (FTIR) 48 3.8 X-ray photoelectron spectroscope (XPS) 49 3.9 Ultraviolet Photoelectron Spectroscopy (UPS) 52 3.10 Thermogravimetric analysis (TGA) 54 3.11 Chemical Stability Experiment 55 3.12 Scanning Electron Microscopy (SEM) 56 3.13 Transmission electron microscope (TEM) 58 3.14 N2 adsorption-desorption isotherms 60 3.15 Particle Size & Zeta Potential Analyzer 61 3.16 Adsorption f Organic Dyes 62 3.17 Photocatalysis of Organic Dyes 64 3.18 Photodegradation of Bisphenol A 68 3.19 Reactive species scavengers experiment 72 3.20 Reaction Pathway study 73 3.21 Total Organic Carbon Measurement 76 4. Conclusion 78 5. Reference 80

    1. E. A. Gendy, D. T. Oyekunle, J. Ifthikar, A. Jawad and Z. Chen, Environmental Science and Pollution Research, 2022, 29, 32566-32593.
    2. A. A. Aslam, A. Irshad, M. S. Nazir and M. Atif, Journal of Cleaner Production, 2023, 400, 136737.
    3. Y. Yang, X. Zhang, J. Jiang, J. Han, W. Li, X. Li, K. M. Yee Leung, S. A. Snyder and P. J. J. Alvarez, Environmental Science & Technology, 2022, 56, 13-29.
    4. H. Demissie, S. Lu, R. Jiao, L. Liu, Y. Xiang, T. Ritigala, F. O. Ajibade, H. K. M. Mihiranga, G. An and D. Wang, Water Research, 2021, 202, 117414.
    5. T. A. Kurniawan, G. Y. Chan, W.-H. Lo and S. Babel, Chemical engineering journal, 2006, 118, 83-98.
    6. M.-K. Nguyen, C. Lin, H.-L. Nguyen, N. T. Q. Hung, D. D. La, X. H. Nguyen, S. W. Chang, W. J. Chung and D. D. Nguyen, Science of The Total Environment, 2023, 899, 165323.
    7. W. Chen, J. Xu, S. Lu, W. Jiao, L. Wu and A. C. Chang, Chemosphere, 2013, 93, 2621-2630.
    8. A. J. Ebele, M. Abou-Elwafa Abdallah and S. Harrad, Emerging Contaminants, 2017, 3, 1-16.
    9. P. Rajak, S. Roy, A. Ganguly, M. Mandi, A. Dutta, K. Das, S. Nanda, S. Ghanty and G. Biswas, Journal of Hazardous Materials Advances, 2023, 10, 100264.
    10. V. Gadore, S. R. Mishra and M. Ahmaruzzaman, Environmental Science and Pollution Research, 2023, 30, 90410-90457.
    11. M. A. Hassaan, A. El Nemr and A. Hassaan, American Journal of Environmental Science and Engineering, 2017, 1, 64-67.
    12. A. Tkaczyk, K. Mitrowska and A. Posyniak, Science of The Total Environment, 2020, 717, 137222.
    13. N. Li, J. Li, Q. Zhang, S. Gao, X. Quan, P. Liu and C. Xu, Environmental Pollution, 2021, 271, 116387.
    14. A. Czarnywojtek, K. Jaz, A. OCHMAŃSKA, M. Zgorzalewicz-Stachowiak, B. Czarnocka, N. Sawicka-Gutaj, P. Ziółkowska, I. Krela-Kaźmierczak, P. Gut and E. Florek, European Review for Medical & Pharmacological Sciences, 2021, 25.
    15. J. Annamalai and V. Namasivayam, Environment International, 2015, 76, 78-97.
    16. S. Huang, J. Li, S. Xu, H. Zhao, Y. Li, Y. Zhou, J. Fang, J. Liao, Z. Cai and W. Xia, Chemosphere, 2019, 237, 124426.
    17. X. Fu, R. Yang, G. Zhou, X. Chen, Y. Liu, J. Chi, X. Li, H. Fang, H. Li and W. Li, Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100629.
    18. Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu, H. Yang, G. I. N. Waterhouse, X. Wang and S. Ma, Nature Communications, 2023, 14, 1106.
    19. M. Bonchio, J. Bonin, O. Ishitani, T.-B. Lu, T. Morikawa, A. J. Morris, E. Reisner, D. Sarkar, F. M. Toma and M. Robert, Nature Catalysis, 2023, 6, 657-665.
    20. Y.-N. Gong, X. Guan and H.-L. Jiang, Coordination Chemistry Reviews, 2023, 475, 214889.
    21. J. Lai, X. Jiang, M. Zhao, S. Cui, J. Yang and Y. Li, Applied Catalysis B: Environmental, 2021, 298, 120622.
    22. Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota and A. Fujishima, Environmental science & technology, 2001, 35, 2365-2368.
    23. P. Karuppasamy, N. Ramzan Nilofar Nisha, A. Pugazhendhi, S. Kandasamy and S. Pitchaimuthu, Journal of Environmental Chemical Engineering, 2021, 9, 105254.
    24. C.-S. Cao, J. Wang, X. Yu, Y. Zhang and L. Zhu, Applied Catalysis B: Environmental, 2020, 277, 119222.
    25. Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang and H.-L. Jiang, Nature Communications, 2023, 14, 3083.
    26. P. V. L. Reddy, K.-H. Kim, B. Kavitha, V. Kumar, N. Raza and S. Kalagara, Journal of Environmental Management, 2018, 213, 189-205.
    27. X. Zhang, G. Li, D. Wu, B. Zhang, N. Hu, H. Wang, J. Liu and Y. Wu, Biosensors and Bioelectronics, 2019, 145, 111699.
    28. S. Karmakar, S. Barman, F. A. Rahimi, D. Rambabu, S. Nath and T. K. Maji, Nature Communications, 2023, 14, 4508.
    29. Q. Zhou, Y. Guo and Y. Zhu, Nature Catalysis, 2023, 6, 1-11.
    30. J. Shin, D. W. Kang, J. H. Lim, J. M. An, Y. Kim, J. H. Kim, M. S. Ji, S. Park, D. Kim and J. Y. Lee, Nature Communications, 2023, 14, 1498.
    31. Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu, H. Yang, G. I. Waterhouse, X. Wang and S. Ma, Nature Communications, 2023, 14, 1106.
    32. G. Yuan, L. Tan, P. Wang, Y. Wang, C. Wang, H. Yan and Y.-Y. Wang, Crystal Growth & Design, 2021, 22, 893-908.
    33. J. Yang, J. Wang, B. Hou, X. Huang, T. Wang, Y. Bao and H. Hao, Chemical Engineering Journal, 2020, 399, 125873.
    34. W. Ji, T.-X. Wang, X. Ding, S. Lei and B.-H. Han, Coordination Chemistry Reviews, 2021, 439, 213875.
    35. D. Hetemi and J. Pinson, Chemical Society Reviews, 2017, 46, 5701-5713.
    36. A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166-1170.
    37. H. Wang, Y. Yang, X. Yuan, W. Liang Teo, Y. Wu, L. Tang and Y. Zhao, Materials Today, 2022, 53, 106-133.
    38. N. B. Singh, G. Nagpal, S. Agrawal and Rachna, Environmental Technology & Innovation, 2018, 11, 187-240.
    39. H. R. Abuzeid, A. F. M. El-Mahdy and S.-W. Kuo, Giant, 2021, 6, 100054.
    40. Y. Zhao, K. Feng and Y. Yu, Advanced Science, 2024, 11, 2308087.
    41. K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang and D. Jiang, Chemical Reviews, 2020, 120, 8814-8933.
    42. A. Halder, M. Ghosh, A. Khayum M, S. Bera, M. Addicoat, H. S. Sasmal, S. Karak, S. Kurungot and R. Banerjee, Journal of the American Chemical Society, 2018, 140, 10941-10945.
    43. J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park and W. R. Dichtel, Science, 2011, 332, 228-231.
    44. N. L. Campbell, R. Clowes, L. K. Ritchie and A. I. Cooper, Chemistry of Materials, 2009, 21, 204-206.
    45. P. Kuhn, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2008, 47, 3450-3453.
    46. D. B. Shinde, H. B. Aiyappa, M. Bhadra, B. P. Biswal, P. Wadge, S. Kandambeth, B. Garai, T. Kundu, S. Kurungot and R. Banerjee, Journal of Materials Chemistry A, 2016, 4, 2682-2690.
    47. B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine and R. Banerjee, Journal of the American Chemical Society, 2013, 135, 5328-5331.
    48. W. Zhao, P. Yan, H. Yang, M. Bahri, A. M. James, H. Chen, L. Liu, B. Li, Z. Pang, R. Clowes, N. D. Browning, J. W. Ward, Y. Wu and A. I. Cooper, Nature Synthesis, 2022, 1, 87-95.
    49. A. de la Peña Ruigómez, D. Rodríguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni , M. L. Ruiz-González, C. Carbonell, D. Maspoch, R. Mas-Ballesté, J. L. Segura and F. Zamora, Chemistry – A European Journal, 2015, 21, 10666-10670.
    50. K. Dey, M. Pal, K. C. Rout, S. Kunjattu H, A. Das, R. Mukherjee, U. K. Kharul and R. Banerjee, Journal of the American Chemical Society, 2017, 139, 13083-13091.
    51. H. Xie, N. Liu, Q. Zhang, H. Zhong, L. Guo, X. Zhao, D. Li, S. Liu, Z. Huang, A. D. Lele, A. H. Brozena, X. Wang, K. Song, S. Chen, Y. Yao, M. Chi, W. Xiong, J. Rao, M. Zhao, M. N. Shneider, J. Luo, J.-C. Zhao, Y. Ju and L. Hu, Nature, 2023, 623, 964-971.
    52. W. H. Chiang, D. Mariotti, R. M. Sankaran, J. G. Eden and K. Ostrikov, Advanced Materials, 2020, 32, 1905508.
    53. R. Foest, M. Schmidt and K. Becker, International Journal of Mass Spectrometry, 2006, 248, 87-102.
    54. M. A. Lieberman and A. J. Lichtenberg, 2005, DOI: https://doi.org/10.1002/0471724254.
    55. J. J. Shi and M. G. Kong, Physical Review Letters, 2006, 96, 105009.
    56. D. Mariotti and R. M. Sankaran, Journal of Physics D: Applied Physics, 2010, 43, 323001.
    57. Y.-H. Chiu, T.-F. M. Chang, C.-Y. Chen, M. Sone and Y.-J. Hsu, Catalysts, 2019, 9, 430.
    58. W. Li, Z. Bie, C. Zhang, X. Xu, S. Wang, Y. Yang, Z. Zhang, X. Yang, K. H. Lim, Q. Wang, W.-J. Wang, B.-G. Li and P. Liu, Journal of the American Chemical Society, 2023, 145, 19283-19292.
    59. M. Calik, T. Sick, M. Dogru, M. Döblinger, S. Datz, H. Budde, A. Hartschuh, F. Auras and T. Bein, Journal of the American Chemical Society, 2016, 138, 1234-1239.
    60. A. Giri, G. Shreeraj, T. K. Dutta and A. Patra, Angewandte Chemie International Edition, 2023, 62, e202219083.
    61. J. Á. Martín-Illán, D. Rodríguez-San-Miguel, C. Franco, I. Imaz, D. Maspoch, J. Puigmartí-Luis and F. Zamora, Chemical Communications, 2020, 56, 6704-6707.
    62. Y. Bai, L. Chen, L. He, B. Li, L. Chen, F. Wu, L. Chen, M. Zhang, Z. Liu, Z. Chai and S. Wang, Chem, 2022, 8, 1442-1459.
    63. NIST X-ray Photoelectron Spectroscopy Database, Journal, 2000, 20899
    64. Z. Li, J. Fan, L. Wang, X. Yang, L. Guo, H. Chen, D. Gong, G. Yang, Q. Xu and S. Zou, Journal of Membrane Science, 2024, 699, 122645.
    65. X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan and Y. Liu, Nature Communications, 2018, 9, 2998.
    66. The XPS Library., Summaries of BEs in NIST Database, https://xpslibrary.com/summaries-of-be-tables-nist/, (accessed 06/19, 2024).
    67. X. Yang, S. Zhang, J. Wang, W. Wang, J. Li, J. Chen, Y. Zhao, C. Wang and Z. Wang, Analytica Chimica Acta, 2020, 1134, 50-57.
    68. S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai and D. Jiang, Journal of the American Chemical Society, 2013, 135, 17310-17313.
    69. S. Wu, Y. Li, T. Wang, H. Li, X. Wang, L. Ma, N. Zhang, P. Yue and Y. Li, Chemical Engineering Journal, 2023, 470, 144135.
    70. Y. Shao, D. You, Y. Wan, Z. Pan and Q. Cheng, Environmental Science: Nano, 2024, 11.
    71. S. Ruidas, A. Chowdhury, A. Ghosh, A. Ghosh, S. Mondal, A. D. D. Wonanke, M. Addicoat, A. K. Das, A. Modak and A. Bhaumik, Langmuir, 2023, 39, 4071-4081.
    72. Y. Yang, H. Niu, L. Xu, H. Zhang and Y. Cai, Applied Catalysis B: Environmental, 2020, 269, 118799.
    73. C. Wang, W. Lu, W. Song, Z. Zhang, C. Xie, Z. Ji, Y. Li and J. Wang, Applied Catalysis A: General, 2023, 666, 119433.
    74. J. Xu, W. Liu, L. Jiang, X. Jing, L.-L. Liu and Z. Li, Small, 2023, 19, 2304989.
    75. S. H. Al-Ansari, H. Gomaa, R. D. Abdel-Rahim, G. A. M. Ali and A. M. Nagiub, Scientific Reports, 2024, 14, 4379.
    76. S. Elbasuney, A. M. El-Khawaga, M. A. Elsayed, A. Elsaidy and M. A. Correa-Duarte, Scientific Reports, 2023, 13, 13819.
    77. E. F. Assanvo, S. Nagaraj, D. Boa and P. Thanikaivelan, Scientific Reports, 2023, 13, 13365.
    78. A. Aslam, M. Z. Abid, K. Rafiq, A. Rauf and E. Hussain, Scientific Reports, 2023, 13, 6306.
    79. R. Jasrotia, J. Prakash, G. Kumar, R. Verma, S. Kumari, S. Kumar, V. P. Singh, A. K. Nadda and S. Kalia, Chemosphere, 2022, 294, 133706.
    80. C. Sun, L. Karuppasamy, L. Gurusamy, H.-J. Yang, C.-H. Liu, J. Dong and J. J. Wu, Separation and Purification Technology, 2021, 271, 118873.
    81. F. Liu, Q. Dong, C. Nie, Z. Li, B. Zhang, P. Han, W. Yang and M. Tong, Chemical Engineering Journal, 2022, 430, 132833.
    82. B. Zhang, F. Liu, C. Nie, Y. Hou and M. Tong, Journal of Hazardous Materials, 2022, 435, 128966.
    83. M. Deng, L. Wang, Z. Wen, J. Chakraborty, J. Sun, G. Wang and P. Van Der Voort, Green Chemistry, 2024, 26, 3239-3248.
    84. Y. Hou, F. Liu, B. Zhang and M. Tong, Environmental Science & Technology, 2022, 56, 16303-16314.
    85. J. Chen, G. Li, N. Lu, H. Lin, S. Zhou and F. Liu, Materials Today Chemistry, 2022, 24, 100832.
    86. C. Xu, X. Liu, H. Liu, D. Li, Y. Yang, S. Lin, D. Fan and H. Pan, Journal of Materials Chemistry A, 2022, 10, 21031-21043.
    87. H. Ming, D. Wei, Y. Yang, B. Chen, C. Yang, J. Zhang and Y. Hou, Chemical Engineering Journal, 2021, 424, 130296.
    88. L. Yang, Y. Wang, J. Yuan, G. Wang, Q. Cao, H. Fei, M. Li, J. Shao, H. Li and J. Lu, Chemical Engineering Journal, 2022, 446, 137095.

    無法下載圖示 全文公開日期 2029/06/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2029/06/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE