簡易檢索 / 詳目顯示

研究生: 郭彥君
YEN-CHUN KUO
論文名稱: 受半圓錐控制之圓柱與壁面交界流
Modulating Flow around Juncture of a Circular Cylinder Mounted Normal to a Flat Plate by an Upstream Semi-cone
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 206
中文關鍵詞: 質點影像測速儀馬蹄形渦漩控制壁面剪應力
外文關鍵詞: control horseshoe vortex, shear force at wall
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

針對一圓柱與壁面交界處,放置不同幾何參數之半圓錐於圓柱與壁面上游交界處,在一拖曳式水槽中使用實驗方法來探討受半圓錐控制之圓柱與壁面交接處上游與下游的流場特徵。使用雷射光頁輔助質點軌跡法觀察流場圓柱與壁面交接處上游與下游的垂直對稱面與水平面的特徵行為,再藉由質點影像測速儀量測速度場,轉換為流線,並計算壁面剪應力以及渦度。在半圓錐長度與雷諾數的域面上,圓柱與壁面上游交界處的流場呈現四種特徵模態,分別為「渦漩」、「不穩定渦漩」、「逆向流動」及「順向流動」。渦漩模態的流場特徵為數目為一或二的馬蹄形渦漩;不穩定渦漩模態的流場特徵呈現數目不固定的馬蹄形渦漩;逆向流動模態時,靠近壁面處流體呈現逆向流動的行為;順向流動模態時,靠近壁面處流體呈現順向流動的行為。當圓柱上游形成馬蹄形渦漩時,最大剪應力產生在馬蹄形渦漩處。使用適當設計的半圓錐可消除圓柱上游的馬蹄形渦漩,降低壁面剪應力,因而改善馬蹄形渦漩對圓柱根部的沖刷效應。在圓柱尾流垂直面上,雷諾數大約低於1000時,流場特徵結構為一源流且無渦旋逸放;在雷諾數大約高於1000時,流場特徵結構為一分歧線且出現渦旋逸放現象。最大剪應力發生在源流或分歧線與圓柱之間。在圓柱上游水平面上,依水平面的高度與馬蹄形渦漩中心點的相對位置而有不同的流體結構。若水平面切過馬蹄形渦漩中心點,則長時間之平均速度及流線圖中主要的流場特徵因受馬蹄形渦漩的影響而形成一四向鞍點與一源流。受半圓錐控制時,在「逆向流動」及「順向流動」兩個模態,因無馬蹄形渦漩,所以四向鞍點與源流也會消失。


Flow around juncture of a circular cylinder mounted normal to a flat plate modulated by a semi-cone installed around upstream corner of the cylinder were investigated experimentally in a water towing tank. The flow patterns were studied by particle-tracking flow visualization method. The flow velocities were measured by particle image velocimetry (PIV). The streamlines, wall shear stresses, and vorticity were calculated using the measured flow velocity data. Four characteristic flow modes (vortical flow, unsteady vortical flow, reverse flow, and forward flow) were observed in the domain of Reynolds number and semi-cone length at fixed semi-cone angles. Horse-shoe vortices wrapping from the upstream region and extending to the downstream area of the circular cylinder appeared in the vortical flow mode. Flow went upstream was found in the reverse flow mode. Smooth flow went downstream without any vortices or reverse flow were observed in the forward flow mode. The calculated wall shear stresses showed peak values at the locations of vortices. The reverse and forward flow modes did not present large local wall shear stresses, which denoted a success of flow control by the semi-cone. No vortex shedding was observed in the cylinder wake near the wall at Reynolds numbers less than about 1000. At Reynolds numbers greater than about 1000, vortex shedding in the cylinder wake near the wall appeared. At Reynolds numbers less than about 1000, the time-averaged flow patterns in the near wake displayed a characteristic flow pattern of a source point, and the maximum wall shear stress appeared at a location between the source point and the cylinder. While at Reynolds numbers larger than about 1000, the time-averaged flow pattern in the near wake was featured by a bifurcation line, and the maximum wall stress was appeared between the bifurcation line and the cylinder.

摘要i Abstractii 致謝iii 目錄iv 符號索引x 表圖索引xi 第一章 緒論1 1.1研究動機1 1.2文獻回顧2 1.2.1橋墩沖刷相關研究2 1.2.2馬蹄型渦流相關研究3 1.2.3前期研究5 第二章 實驗設備、儀器與方法6 2.1實驗設備6 2.1.1拖曳式水槽6 2.1.2圓柱與壁面模型6 2.2半圓錐控制法7 2.3水槽儀器控制方法7 2.3.1馬達控制器7 2.3.2觸發訊號控制8 2.4實驗儀器與方法9 2.4.1雷射光頁9 2.4.2數位相機9 2.4.3偏光鏡9 2.4.4無線定時快門線10 2.4.5質點特性分析10 2.4.6質點軌跡流場觀察法(PTFV)10 2.4.7質點影像速度儀11 第三章 圓柱與壁面交接處上游垂直面流場特徵17 3.1圓柱與壁面交界處上游垂直面流場特徵17 3.1.1圓柱與壁面交界處上游垂直面隨時間衍化之可視化17 3.1.2圓柱與壁面交界處上游垂直面之流場特徵模態19 3.2圓柱與壁面交界處上游垂直面受半圓錐控制之流場模態特徵20 3.2.1圓柱與壁面交界處上游垂直面受L/D = 0.3半圓錐控制隨時間衍化之可視化20 3.2.2圓柱與壁面交界處上游垂直面受L/D = 0.75半圓錐控制隨時間衍化之可視化22 3.2.3圓柱與壁面交界處上游垂直面受L/D = 1.2半圓錐控制隨時間衍化之可視化23 3.3圓柱與壁面交界處上游垂直面流場特徵模態分區24 3.4圓柱與壁面交界處上游垂直面之量化流場特徵25 3.4.1圓柱與壁面交界處上游垂直面之速度與流線圖25 3.4.2圓柱與壁面交界處上游垂直面之流場拓墣分析26 3.5圓柱與壁面交界處上游垂直面受半圓錐流場的量化流場特徵28 3.5.1圓柱與壁面交界處上游垂直面受L/D = 0.3 半圓錐控制之速度與流線圖28 3.5.2圓柱與壁面交界處上游垂直面受L/D = 0.75 半圓錐控制之速度與流線圖30 3.5.3圓柱與壁面交界處上游垂直面受L/D = 1.2 半圓錐控制之速度與流線圖31 3.6圓柱與壁面交界處上游垂直面渦度分析32 3.6.1圓柱與壁面交界處上游垂直面之渦度32 3.6.2圓柱與壁面交界處上游垂直面受L/D = 0.3半圓錐之渦度33 3.6. 3 圓柱與壁面交界處上游垂直面受L/D = 0.75半圓錐之渦度33 3.6. 4 圓柱與壁面交界處上游垂直面受L/D = 1.2半圓錐之渦度34 第四章 圓柱與壁面交界處下游垂直面流場特徵35 4.1圓柱與壁面交界處下游垂直面之流場模態特徵35 4.1.1圓柱與壁面交界處下游垂直面隨時間衍化之可視化35 4.2圓柱與壁面交界處下游垂直面受半圓錐控制流場模態特徵36 4.2.1圓柱與壁面交界處下游垂直面受L/D = 0.3半圓錐控制隨時間衍化之可視化37 4.2.2圓柱與壁面交界處下游垂直面受L/D = 0.75半圓錐控制隨時間衍化之可視化38 4.2.3圓柱與壁面交界處下游垂直面受L/D = 1.2半圓錐控制隨時間衍化之可視化40 4.3圓柱與壁面交界處下游垂直面之量化流場特徵41 4.3.1圓柱與壁面交界處下游垂直面之速度與流線圖41 4.4圓柱與壁面交界處下游垂直面受半圓錐流場的量化流場特徵42 4.4.1圓柱與壁面交界處下游垂直面受L/D = 0.3 半圓錐控制之速度與流線圖42 4.4.2圓柱與壁面交界處下游垂直面受L/D = 0.75 半圓錐控制之速度與流線圖43 4.4.3圓柱與壁面交界處下游垂直面受L/D = 1.2 半圓錐控制之速度與流線圖44 4.4.4圓柱與壁面交界處下游垂直面在不同ReD於無控制與受半圓錐控制之速度與流線比較45 第五章 壁面剪應力 46 5.1圓柱與壁面交界處上游垂直面之剪應力分佈46 5.1.1圓柱與壁面交界處上游垂直面無控制之剪應力分佈46 5.2圓柱與壁面交界處上游垂直面受半圓錐控制之剪應力分佈47 5.2.1圓柱與壁面交界處上游垂直面受L/D = 0.3半圓錐控制之剪應力分佈47 5.2.2圓柱與壁面交界處上游垂直面受L/D = 0.75半圓錐控制之剪應力分佈48 5.2.3圓柱與壁面交界處上游垂直面受L/D = 1.2半圓錐控制之剪應力分佈49 5.2.4圓柱與壁面交界處上游垂直面受半圓錐控制於ReD = 500之剪應力分佈50 5.2.5圓柱與壁面交界處上游垂直面受半圓錐控制於ReD = 1500之剪應力分佈50 5.2.6圓柱與壁面交界處上游垂直面受半圓錐控制於ReD = 2250之剪應力分佈51 5.2.7圓柱與壁面交界處上游垂直面受半圓錐控制於ReD = 5000之剪應力分佈51 5.3圓柱與壁面交界處下游垂直面受半圓錐控制於不同速度之剪應力分佈51 5.3.1圓柱與壁面交界處下游垂直面受半圓錐控制於ReD = 500之剪應力分佈51 5.3.2圓柱與壁面交界處下游垂直面受半圓錐控制於ReD = 1500之剪應力分佈52 5.3.3圓柱與壁面交界處下游垂直面受半圓錐控制於ReD = 2250之剪應力分佈53 5.3.4圓柱與壁面交界處下游垂直面受半圓錐控制於ReD = 5000之剪應力分佈53 第六章 圓柱與壁面交界處水平面流場特徵55 6.1圓柱與壁面交界處水平面之流場模態特徵55 6.1.1圓柱與壁面交界處水平面隨時間衍化之可視化55 6.2圓柱與壁面交界處水平面受半圓錐控制之流場模態特徵57 6.2.1圓柱與壁面交界處水平面受L/D = 0.3半圓錐控制隨時間衍化之可視化57 6.2.2圓柱與壁面交界處水平面受L/D = 0.75半圓錐控制隨時間衍化之可視化59 6.2.3圓柱與壁面交界處水平面受L/D = 1.2半圓錐控制隨時間衍化之可視化60 6.3圓柱與壁面交界處水平面之量化流場特徵61 6.3.1圓柱與壁面交界處水平面之速度與流線圖61 6.4圓柱與壁面交界處水平面受半圓錐控制之量化流場特徵62 6.4.1圓柱與壁面交界處水平面受L/D = 0.3半圓錐控制之速度與流線圖62 6.4.2圓柱與壁面交界處水平面受L/D = 0.75半圓錐控制之速度與流線圖63 6.4.3圓柱與壁面交界處水平面受L/D = 1.2半圓錐控制之速度與流線圖63 第七章 結論與建議65 7.1結論65 7.2建議66 參考文獻68

[1]周郁芳、陳志明、賴桂文、林永敏:「八八水災橋梁受損實例探討」,水利技師工會聯合資訊網,水利會訊,會訊第十三期,台灣,中華民國,2010。
[2]陳賜賢:「河川橋梁破壞原因探討—以莫拉克談風雙園大橋為例」,水利技師工會聯合資訊網,水利會訊,會訊第十四期,台灣,中華民國,2011。
[3]Dargahi, B., “Controlling mechanism of local scouring,” Journal of Hydraulic Engineering, Vol. 116, No. 10, 1990, pp. 1197-1214
[4]Ahmed, F. and Rajaratnam, N., ”Flow around bridge piers,” Journal of Hydraulic Engineering, Vol. 124, No. 3, 1998, pp. 288-300.
[5]Bruce, W. M. and Arved, J. R., ” Flow characteristics in local scour at bridge piers,” Journal of Hydraulic Research, Vol. 15, No. 4, 1977, pp. 373-380.
[6]Melville, B.W. and Chiew, Y. M., “Time scale for local scour at bridge piers,” Journal of Hydraulic Engineering, Vol. 125, No. 1, 1999, pp. 59-65.
[7]Baker, C. J., “The laminar horseshoe vortex,” Journal of Fluid Mechanics, Vol. 95, Part 2, 1979, pp. 347-367.
[8]Baker, C. J., “The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, No. 3, 1985, pp. 263-274.
[9]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
[10]Chou, J. H. and Chao, S. Y., ” Branching of a horseshoe vortex around surface-mounted rectangular cylinders,” Experiments in Fluids, Vol. 28, No. 5, 2000, pp. 394-402
[11]Simpson, R.L., “Junction flows,” Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 415-443.
[12]Wei, Q. D., Cheng, G., and Du, X. D., “An experimental study on the structure of juncture flows,” Journal of Visualization, Vol. 3, No. 4, 2001, pp. 341-348.
[13]Sumner, D., Heseltine, J. L., and Dansereau, O. J. P., “Wake structure of a finite circular cylinder of small aspect ratio,” Experiments in Fluids, Vol. 37, No. 5, 2004, pp. 720-730.
[14]Pattenden, R. J., Turnock, S. R., and Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane,” Experiments in Fluids, Vol. 39, No. 1, 2005, pp. 10-21.
[15]Wei, Q. D., Wang, J. M., Chen, G., Lu, Z. B., and Bi, W. T., “Modification of junction flows by altering the section shapes of the cylinders,” Journal of Visualization, Vol. 11, No. 2, 2008, pp. 115-124.
[16]Wang, J. M., Bi, W. T., and Wei, Q. D., “Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow,” Experiments in Fluids, Vol. 46, No. 6, 2009, pp. 1093-1104.
[17]Huang, R. F., Hsu, C. M., and Lin, W. C., “Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate,” Experimental Thermal and Fluid Science, Vol. 55, May 2014, pp, 187-199.
[18]Huang, R. F., Hsu, C. M., and Chen, C., “Effects of an upstream tetrahedron on the circular cylinder-flat plate juncture flow,” Experiments in Fluids, Vol. 56, No. 7, 2015, pp, 146-160.
[19]Richard, C. F. and John, H. S., Fundamentals of Air Pollution Engineering, Prentice Hall, New York, 1988, pp. 290-357.
[20]Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, Oxford, 1963, pp. 44-88.
[21]Perry, A. E. and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. Vol. 18, Part B, 1975, pp. 299-315.
[22]Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
[23]Steiner, T. R. and Perry, A. E., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271–298.

無法下載圖示 全文公開日期 2022/06/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE