簡易檢索 / 詳目顯示

研究生: 李綸
Lun Li
論文名稱: 實驗觀測有限長圓柱尾流區之流場特性
Experimental Observations of the Wake due to a Finite-length Cylinder
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 田維欣
Wei-Hsin Tien
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 215
中文關鍵詞: 有限長圓柱流場可視化質點影像測速儀頻譜分析渦旋逸放效應
外文關鍵詞: Finite-length cylinder, Flow visualization, Particle Image Velocimetry (PIV), Spectrum analysis, Vortex shedding
相關次數: 點閱:262下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗的方式探討均一速度分布之自由流撞擊有限長圓柱後產生之下洗效應與上洗效應對尾流區流場的影響,以及分析不同流動和空間參數的實驗影像,以瞭解不同流動和空間參數對尾流區渦旋逸放的影響。本研究使用流場可視化和質點影像測速儀 (PIV) 方法觀察不同雷諾數於各觀察平面上的尾流區流場。實驗觀測於閉迴路循環直立式水洞中進行,將直徑為6.4 mm之有限長圓柱水平安裝在水洞的透明測試段之垂直壁面上,進入測試段的圓柱長度為160 mm,圓柱展弦比為25,並在圓柱頂端嵌入直徑為6.4 mm、厚度為3.2 mm之圓蓋作為自由端。本研究使用高速照相機蒐集實驗流場影像,以雷射光頁照射兩個垂直切平面方向:圓柱縱向切平面 (XY平面) 與圓柱橫向切平面 (YZ平面) ;圓柱縱向切平面 (XY平面) 僅有一個觀測平面,為Z/D = 0;圓柱橫向切平面 (YZ平面) 共有五個觀測平面,分別為X/D = -1、-5、-10、-15及-20:每個觀測平面上皆有六個不同雷諾數 (ReD) 的結果,分別為195、250、360、560、880及1080。XY平面上之流場可視化結果顯示下洗效應與上洗效應對尾流區的影響範圍,YZ平面上之流場可視化結果顯示尾流區在不同位置的流動型態差異。頻譜分析顯示不同雷諾數於各觀察平面上之尾流的功率譜密度函數中之主頻率及其對應之功率。PIV瞬時結果顯示尾流區隨時間變化之流場特性,即由於渦旋逸放效應,流動呈現規律地左右擺動,及渦旋結構跟隨自由流向下游移動並離開近尾流區。PIV平均結果顯示尾流區多周期之平均流場特性,即平均速度場和平均渦度場之分布對稱於垂直方向上的圓柱中心線。接近圓柱自由端 (X/D = -1、-5) 或接近圓柱底部 (X/D = -20) 之流動型態強烈地受到下洗效應或上洗效應造成的縱向方向速度影響,呈現出三維流動的特徵。遠離圓柱自由端和底部 (X/D = -10、-15) 之流動型態主要受到渦旋逸放效應的影響,顯示相對有規律地渦旋逸放,並趨於二維流動的表現。


    This experimental study investigates the downwash and the upwash effects on the wake flow fields of a finite-length cylinder immersed in a uniform free stream flow. To understand the influence of several parameters on the vortex shedding in the wake flow, the study analyzes the experimental images of different flow and spatial parameters. Flow visualization and Particle Image Velocimetry (PIV) techniques are used to observe the wake flow fields on different observation planes with different Reynolds numbers. The experiments are conducted in a closed-loop vertical water tunnel. A finite-length cylinder with a diameter of 6.4 mm is mounted horizontally to a vertical wall of the transparent test section of the water tunnel. The length of the cylinder entering the test section is 160 mm, which gives the cylinder an aspect ratio of 25. A cap with a diameter and thickness of 6.4 and 3.2 mm, respectively, is embedded into the top of the cylinder as its free end. The movements of particles inside the water tunnel are captured by a high-speed camera with the illumination of the laser light sheet. A longitudinal plane (XY-plane), located at Z/D = 0, and five transverse planes (YZ-plane) located at X/D = -1, -5, -10, -15, and -20 are selected as observation planes. Six Reynolds numbers of 195, 250, 360, 560, 880, and 1080 are used to observe the different wake flow fields. The flow visualization results on XY-plane show the three-dimensional wake flow, and the downwash and the upwash effects are observed in this plane. The flow visualization results on YZ-plane show the wake flow patterns at different locations. The spectrum analysis results show the dominant frequency and its corresponding power in the power spectral density function of the wake flow on different observation planes with different Reynolds numbers. The instantaneous results of PIV show the characteristics of the time-varying flow field of the wake, i.e., the flow oscillates from side to side regularly due to the vortex shedding effect, moreover, the vortex structures move downstream with the free stream flow and leave the near wake region. The mean results of PIV show the characteristics of the multi-period time-average flow field of the wake, i.e., the mean velocity field and the mean vorticity field distributions are symmetrical along the center line of the cylinder in the vertical direction. The flow patterns near the cylinder free end (X/D = -1 and X/D = -5) or near the cylinder base (X/D = -20) are strongly affected by the downwash or upwash effect, i.e., the dominant longitudinal direction velocity, and present characteristics of the three-dimensional flow. The flow patterns away from the free end and base of the cylinder (X/D = -10 and X/D = -15) are mainly affected by the vortex shedding effect, display relatively rhythmic shedding of vortices, and tend to performances of the two-dimensional flow.

    摘要 i Abstract iii 誌謝 v 目錄 vii 符號索引 ix 表目錄 xiii 圖目錄 xvii 1 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 雷諾數 (Reynolds number, ReD) 3 1.2.2 鈍體自由端形狀 (Free end shape of bluff body) 8 1.2.3 圓柱展弦比 (Aspect Ratio, AR) 8 1.3 論文架構 9 2 實驗設置與方法 11 2.1 實驗設置 11 2.2 實驗與分析方法 13 2.2.1 流場可視化 (Flow visualization) 14 2.2.2 質點影像測速儀 (Particle Image Velocimetry, PIV) 14 2.2.3 頻譜分析 (Spectrum analysis) 18 3 實驗結果與討論 25 3.1 流場可視化結果 (Results of flow visualization) 25 3.2 PIV分析之瞬時結果 (Instantaneous results of PIV) 27 3.2.1 瞬時流線圖 (Instantaneous streamline charts) 28 3.2.2 瞬時渦度場 (Instantaneous vorticity fields) 30 3.3 頻譜分析之結果 (Results of spectrum analysis) 32 3.3.1 比較不同方向的速度 33 3.3.2 比較不同雷諾數 34 3.3.3 比較不同觀察平面 35 3.4 PIV分析之平均結果 (Mean results of PIV) 36 3.4.1 平均流線圖 (Mean streamline charts) 37 3.4.2 平均速度場 (Mean velocity fields) 38 3.4.3 紊流強度場 (Turbulence intensity fields) 40 3.4.4 平均渦度場 (Mean vorticity fields) 43 3.4.5 尾流尺寸 (Wake sizes) 45 3.4.6 雷諾應力場 (Reynolds stress fields) 46 3.4.7 紊流動能場 (Turbulent kinetic energy fields) 48 4. 結論與建議 53 4.1 結論 53 4.2 建議 55 參考文獻 56 作者簡歷 185

    [1] A. E. Perry, M. S. Chong, and T. T. Lim, "The vortex-shedding process behind two-dimensional bluff bodies," Journal of Fluid Mechanics, vol. 116, pp. 77-90, Mar. 1982.
    [2] A. E. Popham, The Drawings of Leonardo Da Vinci. United Kingdom, London: Jonathan Cape, 1946.
    [3] Q. R. Su, "Experimental study on the flow field due to a finite-length cylinder with an embedded cap of different sizes at its free end," Master's thesis, National Taiwan University of Science and Technology, 2020.
    [4] C. H. Huang, "The instantaneous and time-averaged flow field structure of the near wake of a finite-length cylinder," Master's thesis, National Taiwan University of Science and Technology, 2021.
    [5] O. Reynolds, "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels," Proceedings of the Royal Society of London, vol. 174, pp. 935-982, 1883.
    [6] A. Sommnerfeld, "Beitrag zur hydrodynamischen erklarung der turbulenten flussigkeitsbewegung (interpretation of the fluid dynamics of turbulent flow)," In: Proceedings of the 4th International Mathematical Congress, Rome, vol. 3, pp. 116-124,1908.
    [7] M. M. Zdravkovich, Flow Around Circular Cylinders Volume 1: Fundamentals. New York: Oxford University Press, 1997.
    [8] A. Roshko, On the Development of Turbulent Wakes from Vortex Streets. Washington: National Advisory Committee for Aeronautics, 1953.
    [9] C. Park and S. Lee, "Effects of free-end corner shape on flow structure around a finite cylinder," Journal of Fluids and Structures, vol. 19, pp. 141-158, Feb. 2004.
    [10] M. Adaramola, O. Akinlade, D. Sumner, D. Bergstrom, and A. Schenstead, "Turbulent wake of a finite circular cylinder of small aspect ratio," Journal of Fluids and Structures, vol. 22, pp. 919-928, Ang. 2006.
    [11] M. Einian, D. J. Bergstrom, and D. Sumner, "Numerical Simulation of the Flow Around a Surface-Mounted Finite Square Cylinder," in ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B, (Montreal, Quebec, Canada), pp. 103-110, ASMEDC, Jan. 2010.
    [12] N. Rostamy, D. Sumner, D. Bergstrom, and J. Bugg, "Local flow field of a
    surface-mounted finite circular cylinder," Journal of Fluids and Structures, vol. 34, pp. 105-122, Oct. 2012.
    [13] D. Sumner, "Flow above the free end of a surface-mounted finite-height circular cylinder: A review," Journal of Fluids and Structures, vol. 43, pp. 41-63, Nov. 2013.
    [14] R. C. Flagan and J. H. Seinfled, Fundamentals of air pollution engineering. Englewood Cliffs, New Jersey: Prentice Hall, 1988.
    [15] R. J. Adrian and J. Westwheel, Particle Image Velocimetry. New York, NY: Cambridge University Press, 2011.
    [16] R. J. Adrian, "Twenty years of particle image velocimetry," Experiments in Fluids, vol. 39, pp. 159-169, Aug. 2005.
    [17] D. B. Barker and M. E. Fiurney, "Measuring fluid velocities with speckle patterns," Opt Lett, vol. 1, pp. 135-137, 1977.
    [18] R. Grousson and S. Mallick, "Study of flow pattern in a fluid by scattered laser light," Appl. Opt., vol. 16, pp. 2334-2336, 1977.
    [19] R. Meynart, "Flow velocity measurement by a speckle method," In: Proceedings of the 2nd European congress on optics applied to metrology, Strasbourg, France, vol. 210, pp. 25-28, Nov. 1979.
    [20] R. J. Adrian, "Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs. particle image velocimetry," Appl. Opt., vol. 23, pp. 1690-1691, 1984.
    [21] L. M. Lourenco, S. P. Gogineni, and R. T. Lasalle, "On-line particle image velocimeter: an integrated approach," Appl. Opt., vol. 33, pp. 2465-2470, 1994.
    [22] S. C. Chapra and R. P. Canale, Numerical methods for engineers. New York, NY: MeGraw-Hill Education, seventh edition ed., 2015.
    [23] M. Ozgoren, "Flow structure in the downstream of square and circular cylinders," Flow Measurement and Instrumentation, vol. 17, pp. 225-235, Ang. 2006.
    [24] F. M. White, Viscous Fluid Flow. New York, NY: MeGraw-Hill Education, international edition ed., 2006.
    [25] H. Schlichting and K. Gersten, Boundary Layer Theory. Berlin: Springer, eighth and enlarged edition ed., 2000.
    [26] M. Ozgoren, E. Pinar, B. Sahin, and H. Akilli, "Comparison of flow structures in the downstream region of a cylinder and sphere," International Journal of Heat and Fluid Flow, vol. 32, pp. 1138-1146, Dec. 2011.
    [27] J. C. Jhang, "Preliminary study on a round tube jet in vertical water tunnel," Master's thesis, National Taiwan University of Science and Technology, 2009.

    QR CODE