簡易檢索 / 詳目顯示

研究生: 許雅筑
Ya-Chu Hsu
論文名稱: 快速退火製程控制VLS機制成長In2Se3奈米線 暨液壓鑄造製備InSe奈米線相變化研究
Controlling Growth In2Se3 Nanowires with RTA Process by VLS Mechanism and Phase Change Study of InSe Nanowires by Hydraulic Pressure Injection Method
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
Bin-Hong Yeh
周賢鎧
Shyan-kay Jou
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 100
中文關鍵詞: 奈米線快速退火熱處理壓鑄硒化銦相變化
外文關鍵詞: nanowires, RTA, indium selenide, hydraulic pressure injection processing, phase change
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要分別以2:3與1:1兩部份的銦硒系統探討。第一部份,以高均勻性金奈米粒子催化的In2Se3奈米線透過氣-液-固(VLS)機制的快速熱退火(RTA)處理成長。利用金奈米顆粒催化成長In2Se3,使奈米線直徑可藉由不同金膜厚度進行控制,並且透過快速熱退火製程(100 ℃/s)改善奈米線的均勻性。與較慢的加熱速率相比(0.1 ℃/ s),有、無快速熱退火製程處理的In2Se3奈米線的平均直徑和分佈分別為97.14 nm ± 22.95 nm (23.63%)和119.06 nm ± 48.75 nm (40.95%)。使用臨場退火穿透式電子顯微鏡,研究其加熱速率對金膜沉積形成金奈米顆粒的影響。結果表明,有、無快速熱退火製程處理的金奈米顆粒的平均直徑和分佈為19.84 nm ± 5.96 nm (30.00%)和22.06 nm ± 9.00 nm (40.80%)。證明金催化的In2Se3奈米線的直徑尺寸、分佈與均勻性,可藉由快速熱退火製程前處理改善。藉由系統性的研究,調整退火速率、前驅物和成長溫度來控制其它奈米材料的尺寸分佈。
第二部份,通過使用陽極氧化鋁模板的液壓鑄造處理製造高度有序的硒化銦(InSe)奈米線陣列。利用掃描式電子顯微鏡觀察InSe奈米線的形態。藉由X-射線繞射分析和拉曼測量分析微結構,變溫拉曼光譜分析觀察到相變現象。InSe奈米線的相變研究是在臨場加熱穿透式電子顯微鏡和非臨場加熱拉曼分析下進行的。700 ℃ 下,β-InSe完全轉化為γ-In2Se3。在熱處理過程中,α-In2Se3與β-InSe共存,直到β-InSe完全轉化為γ-In2Se3。藉陰極射線發光譜證實InSe的能隙為1.24 eV,且能隙會隨著溫度變化改變。


Indium-selenide system is the mainly subject to discuss, diindium selenide (In2Se3) and indium monoselenide (InSe) are divided into two parts in this thesis.
High uniformity Au-catalyzed In2Se3 nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thickness of Au films and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions of In2Se3 nanowires that with and without RTA process are 97.14 nm ± 22.95 nm (23.63 %) and 119.06 nm ± 48.75 nm (40.95 %), respectively. The in-situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles that with and without RTA process are 19.84 nm ± 5.96 nm (30.00 %) and about 22.06 nm ± 9.00 nm (40.80 %), respectively. It proves that the diameter size, distribution and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor and growth substrate to control the size distribution of other nanomaterials.
The highly ordered array of indium monoselenide (InSe) nanowires are fabricated by a hydraulic pressure injection processing with anodic aluminum oxide and microstructure is analyzed by templates. The morphology of InSe NWs was observed by SEM, XRD and Raman measurement. The temperature is the most important parameter for phase-change occurred. To observe the phenomenon of phase-change, thermal annealing processing of the InSe NWs was done under an in-situ heating TEM and ex-situ Raman analysis. The β-InSe is totally transformed to γ-In2Se3 happened as the temperature reaches to 700 °C. During proceeding the thermal processed, the α-In2Se3 will coexist with β-InSe till the β-InSe is totally transformed to γ-In2Se3. The CL spectrum confirmed that the direct band gap of InSe bulk is 1.24 eV. InSe bulk is temperature dependence of the energy gap.

摘要 I ABSTRACT III 致謝 V Contents VII List of Abbreviations and Acronyms XI List of Figures and Tables XII Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.1.1 Definition of Nanostructure 2 1.1.2 One-Dimensional Nanostructures 3 1.2 Growth Mechanism and Growth Method of Nanowires 4 1.2.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 4 1.2.2 Vapor-Solid (VS) Growth Mechanism 6 1.2.3 Chemical Vapor Deposition (CVD) 6 1.2.4 Electrodeposited in AAO Template 7 1.3 Structural Characteristics of Indium Selenides 8 1.3.1 In2Se3 10 1.3.2 InSe 15 1.4 Phase-Change Materials 19 Chapter 2 Experiment Procedures 20 2.1 The Synthesized Method for α-In2Se3 Nanowires 20 2.2 The Prepared Method for InSe Nanowires 22 2.3 The Morphologies and Microstructure Characterization of In2Se3 and InSe Nanowires 25 2.3.1 Scanning Electron Microscope (SEM) 25 2.3.2 Transmission Electron Microscope (TEM) 25 2.3.3 Energy Dispersive Spectrometer (EDS) 26 2.3.4 X-ray Diffraction (XRD) 28 2.3.5 Cathodoluminescence (CL) Measurement 28 2.3.6 Raman Spectroscopy Analysis 29 Chapter 3 α-In2Se3 Nanowires 31 3.1 Motivation 31 3.2 The Decision of Substrate Pre-treatment 31 3.3 The Influence of Growth Environment for In2Se3 Nanowires 34 3.3.1 Thickness of Gold Film 34 3.3.2 Growth Temperature 37 3.3.3 Precursor Temperature 40 3.3.4 Precursor Amount 43 3.3.5 Growth Time 45 3.3.6 Growth Pressure 47 3.3.7 Position of Substrate 49 3.3.8 Gas Flow 51 3.4 Structure and Characteristic of In2Se3 NWs 53 3.4.1 The XRD Measurement of In2Se3 NWs 53 3.4.2 TEM Analysis of In2Se3 NWs 55 3.3.3 Energy Dispersive Spectrometer (EDS) Analysis 57 3.4 Raman Analysis of In2Se3 Nanowires 59 3.5 Growth Mechanism of In2Se3 Nanowires 61 Chapter 4 InSe Nanowires 64 4.1 Motivation 64 4.2 Structure and Characterization of InSe NWs 64 4.2.1 The SEM of InSe NWs 65 4.2.2 The XRD of InSe NWs 68 4.2.3 TEM Analysis of InSe NWs 70 4.3 Optical Analysis of InSe NWs 74 4.3.1 The Cathodoluminescence (CL) Analysis of InSe NWs 74 4.3.2 Raman Analysis of InSe NWs 76 4.4 Phenomenon of Phase Change 78 4.4.1 TEM Measurement 78 4.4.2 Raman Measurement 81 4.4.3 Cathodoluminescence (CL) Measurement 84 Chapter 5 Summary and Conclusions 86 5.1 α-In2Se3 Nanowires 86 5.2 InSe Nanowires 87 Chapter 6 Future works 88 6.1 α-In2Se3 Nanowires 88 6.2 InSe Nanowires 89 Reference 90

[1] K. E. Drexler, “Nanotechnology: From Feynman to Funding”, Bulletin of Science, Technology & Society, 2004, 24, 21-27.
[2] G. A. Silva, “Introduction to Nanotechnology and its Applications to Medicine”, Surg Neurol, 2004, 61, 216-20.
[3] C. M. Lieber, “One-dimensional Nanostructures: Chemistry, Physics & Applications”, Solid State Communications, 1998, 107, 607-616.
[4] Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, The Journal of Physical Chemistry, 1991, 95, 525-532.
[5] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes”, Chemical Reviews, 2005, 105, 1025-1102.
[6] A. M. Merlo, “The Contribution of Surface Engineering to the Product Performance in the Automotive Industry”, Surface and Coatings Technology, 2003, 174 -175, 21-26.
[7] G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. Bradley and K. G. Kornev, “Carbon Nanotubes Loaded with Magnetic Particles”, Nano Letters, 2005, 5, 879-884.
[8] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You and C. H. Yan, “High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties”, Journal of the American Chemical Society, 2006, 128, 6426-6436.
[9] Z. Xu, C. Li, P. Yang, C. Zhang, S. Huang and J. Lin, “Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties”, Crystal Growth & Design, 2009, 9, 4752-4758.
[10] Y. Chang and H. Zeng, “Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons”, Crystal Growth & Design, 2004, 4, 397-402.
[11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Advanced Materials, 2003, 15, 353-389.
[12] Y. Huang, X. Duan and C. M. Lieber, “Semiconductor Nanowires: Nanoscale Electronics and Optoelectronics”, Marcel Dekker: New York, 2005.
[13] M. Law, J. Goldberger and P. Yang, “Semiconductor Nanowires and Nanotubes”, Annual Review of Materials Research, 2004, 34, 83-122.
[14] C.N.R Rao, F.L. Deepak, G. Gundiah and A. Govindaraj, “Inorganic Nanowires”, Progress in Solid State Chemistry, 2003, 31, 5-147.
[15] C. Lai, M. Lu and L. Chen, “Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage”, Journal of Materials Chemistry, 2012, 22, 19-30.
[16] R. S. Wagner and W. C. Eliis, “Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, 1964, 4, 89-90.
[17] H. D. Park and S. M. Prokes, “Study of Nanowire Growth Mechanisms: VLS and Si Assisted”, Springer, 2008, 3, 1-15.
[18] R. W. Balluffi and B. H. Alexander, “Relative Diffusion Rates of Zinc and Copper in Alpha Brass”, Journal of Metals, 1952, 4, 1315-1316.
[19] R. W. Balluffi and B. H. Alexander, “Dimensional Changes Normal to the Direction of Diffusion”, Journal of Applied Physics, 1952, 23, 953-956.
[20] R. W. Balluffi and B. H. Alexander, “Development of Porosity During Diffusion in Substitutional Solid Solutions”, Journal of Applied Physics, 1952, 23, 1237-1244.
[21] J. A. Haber, P. C. Gibbons and W. E. Buhro, “Morphological Control of Nanocrystalline Aluminum Nitride: Aluminum Chloride-Assisted Nanowhisker Growth”, Journal of the American Chemical Society, 1997, 119, 5455-5456.
[22] G. Han, Z. G. Chen, J. Drennan and J. Zou, “Indium Selenides: Structural Characteristics, Synthesis and Their Thermoelectric Performances”, Small, 2014, 10, 2747-2765.
[23] J. H. C. Hogg, H. H. Sutherland and D. J. Williams, “The Crystal Structure of Tetraindium Triselenide”, Acta Crystallographica Section B, 1973, B29, 1590-1593.
[24] S. Popovic, A. Tonejc, B. Grzeta-Plenkovic and R. Trojko, “Revised and New Crystal Data for Indium Selenides”, Journal of Applied Crystallography , 1979, 12, 416-420.
[25] K. Imai, K. Suzuki, T. Haga, Y. Hasegawa and Y. Abe “Phase Diagram of In-Se System and Crystal Growth of Indium Monoselenide” Journal of Crystal Growth, 1981, 54, 501-506.
[26] J. H. C. Hogg, “The Crystal Structure of In6Se7”, Acta Crystallographica Section B, 1971, 27, 1630-1634.
[27] G. Han, Z. G. Chen, C. Sun, L. Yang, L. Cheng, Z. Li, W. Lu, Z. M. Gibbs, J. Snyder, K. Jack, J. Drennan and J. Zou, “A New Crystal: Layer-Structured Rhombohedral In3Se4”, CrystEngComm, 2014, 16, 393-398.
[28] J. S. Rhyee, K. H. Lee, S. M. Lee , E. Cho, S. I. Kim , E. Lee ,Y. S. Kwon, J. H. Shim and G. Kotliar, “Peierls Distortion as a Route to high Thermoelectric Performance in In4Se3-δ Crystals”, Nature, 2009, 459, 965-968.
[29] S. Rhyee, K. Ahn, K. H. Lee, H. S. Ji and J.H. Shim, “Enhancement of the Thermoelectric Figure‐of‐Merit in a Wide Temperature Range in In4Se3–xCl0.03 Bulk Crystals”, Advanced Materials, 2011, 23, 2191-2194.
[30] Z. Lin, L. Chen, L. Wang, J. Zhao and L. Wu, “A Promising Mid‐Temperature Thermoelectric Material Candidate: Pb/Sn-Codoped In4PbxSnySe3”, Advanced Materials, 2013, 25, 4800-4806.
[31] T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando and D. Golberg, “Fabrication of High-Quality In2Se3 Nanowire Arrays Toward High-Performance Visible-Light Photodetectors”, ACS Nano, 2010, 4, 1596–1602.
[32] C. Julien, E. Hatzikraniotis, A. Chevy and K. Kambas, “Electrical Behavior of Lithium Intercalated Layered In-Se Compounds”, Mater. Materials Research Bulletin, 1985, 20, 287-292.
[33] T. Zhai, Y. Ma, L. Li, X. Fang, M. Liao, Yasuo Koide, J. Yao, Y. Bandoa and D. Golberg, “Morphology-Tunable In2Se3 Nanostructures with Enhanced Electrical and Photoelectrical Performances via Sulfur Doping”, Journal of Materials Chemistry, 2010, 20, 6630-6637.
[34] Y. Li, J. Gao, Q. Li, M. Peng, X. Sun, Y. Li, G. Yuan, W. Wen and M. Meyyappan, “Thermal Phase Transformation of In2Se3 Nanowires Studied by in Situ synchrotron Radiation X-Ray Diffraction”, Journal of Materials Chemistry, 2011, 21, 6944-6947.
[35] J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson and C. C. Yang, “Crystal Structure of κ-In2Se3”, Applied Physics Letters, 2002, 81, 4356-4358.
[36] S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon and J. Song, “Growth of CuIn3Se5 Layer on CuInSe2 Films and its Effect on the Photovoltaic Properties of In2Se3/CuInSe2 Solar Cells”, Thin Solid Films, 1998, 323, 265-269.
[37] H. Lee and Y. K. Kim, “Switching Behavior of Indium Selenide-Based Phase-Change Memory Cell”, IEEE Transactions on Magnetics, 2005, 41, 1034-1036.
[38] C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen and Y. S. Huang, “Surface Oxide Effect on Optical Sensing and Photoelectric Conversion of α-In2Se3 Hexagonal Microplates”, ACS Applied Material Interface, 2013, 5, 2269-2277.
[39] C. H. Ho and Y. C. Chen, “Thickness-Tunable Band Gap Modulation in γ-In2Se3”, Royal Society of Chemistry Advances, 2013, 3, 24896-24899.
[40] T. Ikari, S. Shigetomi and K. Hashimoto, “Crystal Structure and Raman Spectra of InSe”, Physica Status Solidi (b), 1982, 111, 477-481.
[41] A. M. Mancini, G. Micocci and A. Rizzo, “New Materials for Optoelectronic Devices: Growth and Characterization of Indium and Gallium Chalcogenide Layer Compounds”, Materials Chemistry and Physics, 1983, 9, 29-54.
[42] Z. Chen, J. Biscaras and A. Shukla, “A High Performance Graphene/Few-Layer InSe Photo-Detector”, Nanoscale, 2015, 7, 5981-5986.
[43] B. A. Unvala, “Chemical Vapor Deposition”, US Patent 499361, 1991.
[44] E. Mafakheri, A. Salimi, R. Hallaj, A. Ramazani and M. A. Kashi, “Synthesis of Iridium Oxide Nanotubes by Electrodeposition intoPolycarbonate Template: Fabrication of Chromium(III) and Arsenic(III) Electrochemical Sensor”, Electroanalysis, 2011, 23, 2429-2437.
[45] C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, 1994, 266, 1961-1966.
[46] A. Huczko, “Template-Based Synthesis of Nanomaterials”, Applied Physics A, 2000, 70, 365-376.
[47] C. R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chemistry of Materials, 1996, 8, 1739-1746.
[48] J. Wang, M. Tian, N. Kumar and T. E. Mallouk, “Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition”, Nano Letter, 2005, 5, 1247-1253.
[49] S. Valizadeh, M. Abid, F. Hernandez-Ramırez, A. R. Rodrıguez, K. Hjort and J. Å. Schweitz, “Template Synthesis and Forming Electrical Contacts to Single Au Nanowires by Focused Ion Beam Techniques”, Nanotechnology, 2007, 17, 1134-1139.
[50] C. Xu, L. Zhang, H. Zhang and H. Li, “Well-Dispersed Gold Nanowire Suspension for Assembly Application”, Applied Surface Science, 2005, 252, 1182-1186.
[51] M. Zhou, S. Chen, S. Zhao and H. Ma, “One-Step Synthesis of Au–Ag Alloy Nanoparticles by a Convenient Electrochemical Method”, Physica E , 2006, 33, 28-34.
[52] G. Zhang, E. Roy, H. Liu, W. Liu, S. Hou, Y. Kui and Z. Xue, “Field Emission from an Array of Free-Standing Metallic Nanowires”, Chinese Physics Letters, 2002, 19, 1016-1018.
[53] J. Liu, J. Duan, M. g Hou, D. Mo, M. E. Toimil-Molares, S. Karim, T. W. Cornelius, D. Dobrev, H. J. Yao, Y. M. Sun and M. D. Hou, “Electrochemical Fabrication of Single-Crystalline and Polycrystalline Au Nanowires: the Influence of Deposition Parameters”, Nanotechnology, 2006, 17, 1922-1926.
[54] C. Peng, L. Cheng and M. Mansuripur, “Experimental and Theoretical Investigations of Laser-Induced Crystallization and Amorphization in Phase-Change Optical Recording Media”, Journal of Applied Physics, 1997, 82, 4183-4191.
[55] M. Yoshioka, B. C. Hancock and G. Zografi, “Crystallization of Indomethacin from the Amorphous State Below and Above its Glass Transition Temperature”, Journal of Pharmaceutical Sciences, 1994, 833, 1700-1705.
[56] S. Raoux, W. Wełnic and D. Ielmini, “Phase Change Materials and Their Application to Nonvolatile Memories”, Chemical Reviews, 2010, 110, 240-267.
[57] X. Sun, B. Yu, G. Ng, T. D. Nguyen and M. Meyyappan, ”III-VI Compound Semiconductor Indium Selenide (In2Se3) Nanowires: Synthesis and Characterization”, Applied Physics Letters, 2006, 89, 233121.
[58] M. A. Kenawy, H. A. Zayed, A. M. Abo and El-Soud, “A.c. Photoconductivity and Optical Properties of Bulk Polycrystalline and Amorphous InxSe1−x Thin Films”, Journal of Materials Science: Materials in Electronics, 1990, 1, 115-117.
[59] S. T.Lakshmikumar and A. C. Rastogi, ”Selenization of Cu and In Thin Films for the Preparation of Selenide Photo-Absorber Layers in Solar Cells Using Se Vapour Source”, Solar Energy Materials and Solar Cells, 1994, 32, 7-19.
[60] J. Ye, T. Yoshida, Y. Nakamura and O. Nittono, “Optical Activity in the Vacancy Ordered III2VI3 Compound Semiconductor (Ga0.3In0.7)2Se3”, Applied Physics Letters,1995, 67, 3066-3068.
[61] C. Julien, E. Hatzikraniotis and K. Kambas, “Electrical Transport Properties of Impurity-Doped In2Se3”, Physica Status Solidi (a), 1986, 97, 579-585.
[62] Y. Zou, Z. G. Chen, Y. Huang, L. Yang, J. Drennan and J. Zou, ”Electrical Properties from Vapor-Solid-Solid Grown Bi2Se3 Nanoribbons and Nanowires”, The Journal of Physical Chemistry C, 2014, 111, 20620-20626.
[63] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng and Z. Liu, “Controlled Growth of Atomically Thin In2Se3 Flakes by van der Waals Epitaxy”, Journal of the American Chemical Society, 2013, 135, 13274-13277.
[64] S. R. Suryawansh, P. K. Bankar, M. A. More and D. J. Late, “Vapour-Liquid-Solid Growth of One-Dimensional In2Se3 Nanostructures and their Promising Field Emission Behavior”, Royal Society of Chemistry, 2015, 5, 65274-65282.
[65] G. Shen, D. Chen, P. C. Chen and C. Zhou, “Vapor-Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures”, Journal of the American Chemical Society Nano, 2009, 3, 1115-1120.
[66] Q. L. Li, C. H. Liu, Y. T. Nie, W. H. Chen, X. Gao, X. H. Sun and S. D. Wang, “Phototransistor Based on Single In2Se3 Nanosheets”, Nanoscale, 2014, 6, 14538-14542.
[67] J. H. Yum , P. Walter , S. Huber , D. Rentsch , T. Geiger , F. Nüesch , F. D. Angelis , M. Grätzel and M. K. Nazeeruddin, “Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye”, Journal of the American Chemical Society, 2007, 129, 10320-10321.
[68] H. Peng, C. Xie, D. T. Schoen and Y. Cui, “Large Anisotropy of Electrical Properties in Layer-Structured In2Se3 Nanowires”, Nano Letters, 2008, 8, 1511-1516.
[69] K. Lai, H. Peng, W. Kundhikanjana, D. T. Schoen, Chong Xie, Stefan Meister, Y. Cui, M. A. Kelly and Z. X. Shen, “Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy”, Nano letters, 2009, 9, 1265-1269.
[70] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. Yang, “Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays”, Nature Materials, 2004, 3, 524-528.
[71] C. M. Lieber, “Nanoscale Science and Technology: Building a Big Future from Small Things”, Materials Research Bulletin, 2003, 28, 486-491.
[72] P. Yang, “The Chemistry and Physics of Semiconductor Nanowires”, Materials Research Bulletin, 2005, 30, 85-91.
[73] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert and L. Samuelson, “Preferential Interface Nucleation: an Expansion of the VLS Growth Mechanism for Nanowires”, Advanced Materials, 2009, 20, 153-165.
[74] Y. Wu , Y. Cui , L. Huynh , C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires”, Nano Letter, 2004, 4, 433-436.
[75] D. Kang, T. Rim, C. Baek, M. Meyyappan and J. Lee, “Investigation of Electromigration in In2Se3 Nanowire for Phase Change Memory Devices”, Applied Physics Letters, 2013, 103, 233504.
[76] D. Kang, T. Rim, C. Baek, M. Meyyappan and J. Lee, “Thermally Phase-Transformed In2Se3 Nanowires for Highly Sensitive Photodetectors”, Small, 2014, 10, 3795-3802.
[77] Q. L. Li, Y. Li, J. Gao, S. D. Hwang and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector”, Applied Physics Letters, 2011, 99, 243105.
[78] Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, Journal of the American Chemical Society, 2001, 123, 3165-3166.
[79] K. A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson and W. Seifert, “Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires”, Nano Letters, 2005, 5, 761-764
[80] L. Bernstein, “Semiconductor Joining by the Solid‐Liquid‐Interdiffusion (SLID) Process I. The Systems Ag‐In, Au‐In, and Cu‐In”, Journal of the Electrochemical Society, 1966, 113, 1282-1288.
[81] Y. K. Lin, H. W. Ting, C. Y. Wang, S. Gwo, L. J. Chou, C. J. Tsai and L. J. Chen, “Au Nanocrystal Array/Silicon Nanoantennas as Wavelength-selective Photoswitches”, Nano Letters, 2013, 13, 2723-2731.
[82] H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai and L. J. Chen, “Large Area Controllable Hexagonal Close-packed Single-crystalline Metal Nanocrystal Arrays with Localized Surface Plasmon Resonance Response”, Journal of Materials Chemistry, 2013, 1, 3593-3599.
[83] H. W. Wu, L. J. Chen and C. J. Tsai, “Self-assembled Epitaxial Silicon Nanowires Grown Along Easy-glide Directions on Si (001)”, Micro & Nano Letters, 2006, 1, 25-28.
[84] E. Mafi, A. Soudi and Y. Gu, “Electronically Driven Amorphization in Phase-Change In2Se3 Nanowires”, The Journal of Physical Chemistry C”, 2012, 116, 22539-22544.
[85] S. Webster, D. N. Batchelder and D. A. Smith, “Submicron Resolution Measurement of Stress in Silicon by Near-field Raman Spectroscopy”, Applied Physics Letters, 1998, 72, 1478-1480.
[86] D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, R. M. Shelby, M. Salinga, C. M. Jefferson and M. Wuttig, “Characterization of Phase Change Memory Materials Using Phase Change Bridge Devices”, Journal of Applied Physics, 2009, 106, 054308.
[87] A. Popov, “Two generations of Phase‐change Memory Devices: Differences and Common Problems”, Physica Status Solidi (b), 2009, 246, 1837-1840.
[88] M. Osman, Y. Huang, W. Feng, G. Liu, Y. Qiu and P. Hu, “Modulation of Opto-Electronic Properties of InSe Thin Layers via Phase Transformation” Royal Society of Chemistry Advances, 2016, 6, 70452-70459.
[89] W. Feng, W. Zheng, W. Cao and P. Hu, “Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface”, Advance Mater, 2014, 26, 6587-6593.
[90] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi and A. I. Dmitriev, “Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement”, Advance Mater, 2013,40, 5714-5718.
[91] C. Ulrich, M. A. Mroginski, A. R. Goñi, A. Cantarero, U. Schwarz, V. Muñoz and K. Syassen, “Vibrational Properties of InSe under Pressure: Experiment and Theory”, Physica Status Solidi (b), 1996, 198, 121-127.
[92] S. Shigetomi and T. Ikari, “Annealing Behavior of Layer Semiconductor p-InSe Doped with Hg”, Japanese Journal of Applied Physics, 2000, 39, 1184-1185.
[93] G. W. Mudd, S. A. Svatek, T. Ren, A. Patan`e, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev and Z. R. Kudrynskyi, “Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement”, Advance Mater, 2013, 25, 5714-5718.
[94] R. Lewandowskaa, R. Bacewicza, J. Filipowicz and W. Paszkowicz, “Raman Scattering in α-In2Se3 Crystals”, Materials Research Bulletin, 2001, 36, 2577-2583.
[95] C. Carlone, S. Jandl and H.R. Shanks, “Optical Phonons and Crystalline Symmetry of InSe”, Physica Status Solidi (b), 1981, 103, 123-130.
[96] C. Ho, Y. Chen and C. Pan, “Structural Phase Transition and Erasable Optically Memorized Effect in Layered γ-In2Se3 Crystals”, Journal of Applied Physics, 2014, 115, 033501.
[97] M. A. Afifi, N. A. Hegab and A. E. Bekheet, “Effect of Annealing on the Electrical Properties of In2Se3 Thin Films”, Vacuum, 1995, 46, 335-339.
[98] A. Walsh, J. L. F. D. Silva, S. Wei, C. Ko¨rber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange and R. G. Egdell, “Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy”, Physical Review Letters, 2008, 100, 167402.

無法下載圖示 全文公開日期 2022/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE