簡易檢索 / 詳目顯示

研究生: 郭曜禎
Yao-Chen Kuo
論文名稱: 新型三頻帶寬頻除二注入鎖定除頻器與低相位雜訊雙頻帶PMOS壓控振盪器之研究
A Novel Tripleband Divider By Two Injection-Locked Frequency Divider And Low Phase Noise Dualband PMOS VCO
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 馮武雄
Wu-Shiung Feng
鄧恒發
Heng-Fa Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 103
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: VCO, ILFD
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究注入鎖定除頻器,以及壓控振盪器。此兩種電路是無線通訊系統中重要的兩種電路,其操作頻率範圍決定頻率合成器之頻寬。一個好的振盪器必須具有低相位雜訊之特性,以避免相鄰頻帶雜訊的混波轉換。注入鎖定除頻器經常被用作高頻除頻器,必須具有寬鎖定範圍之特性。
第一部分提出了一個有三頻帶的寬頻注入鎖定除頻器,用 TSMC 0.18 μm 1P6M CMOS技術完成. 本除二的注入鎖定除頻器是由NMOS交叉耦合對以及六階層的LC槽實現. 在供應電壓為1V時,本電路消耗功率為11.6 mW .該電路主頻帶分別為8.75 GHz(高頻帶) 5.79GHz(中頻帶)以及3.7GHz(低頻帶);除頻範圍分別為17.1 GHz到18.3GHz(高),10.1 GHz到12.7GHz(中),以及6.0 GHz 到7.7GHz(低).本電路可藉由改變可變電容的大小來切換操作頻段.電路面積為0.898×0.980mm2.
其次, 提出的是一個操作於6 GHz的串聯可調阿姆斯壯全N型壓控振盪器,該電路被TSMC 0.18 μm 1P6M CMOS技術完成.該電路是由兩個單端串連阿姆斯壯壓控振盪器組成.當供應電壓為1.3 V時,該電路的的相位雜訊在離主頻1 MHz處為-125.88 dBc/Hz,主頻為6.06 GHz. 本電路之figure of merit(FOM)為-192.8 dBc/Hz.
最後,呈現一個雙頻帶P型壓控振盪器.該電路由雙共振LC槽以及全P型的交叉偶和對組成.該電路的震盪模態分別為串聯共振(高頻)以及並聯共振(低頻),並可藉由可變電容切換頻帶.該電路的高頻帶操作在7 GHz低頻帶操作2.9GHz.本電路由TSMC 0.18 μm 1P6M CMOS實現, 在供應電壓為0.65 V時消耗功率為3.003 mW. 本電路面積為0.953×1.0 mm2.


This thesis presents the design of Injection - Locked Frequency Dividers (ILFDs) and voltage-controlled oscillator (VCO) which are two kinds of important sub-circuits in wireless telecommunication systems. Bandwidth of a frequency synthesizer is dominated by operating frequency ranges of these two blocks. A good VCO must exhibit low-phase-noise characteristic to prevent noise in adjacent frequencies from being down-converted or up-converted. We generally apply an injection-locked frequency divider (ILFD) to perform frequency division at high frequency. The wider the locking range is, the better ILFD.
Firstly, we present A triple-band wide operation range divide-by-2 injection-locked frequency divider (ILFD) using a standard the TSMC 0.18 μm 1P6M CMOS technology is presented. The ÷2 ILFD circuit is realized with a cross-coupled n-core MOS LC-tank oscillator with a 6th order LC resonator. The core power consumption of the ILFD core is 11.6 mW at the supply voltage of 1V. The divider’s free-running frequency operates at three frequency bands: 8.75 GHz, 5.79GHz and 3.7GHz, and the ILFD operation range covers a high-band from 17.1 to 18.3GHz, a middle-band from 10.1 to 12.7GHz, and a low-band from 6.0 to 7.7GHz. The band section is obtained by tuning the varactor’s control bias. The chip area is 0.898× 0.980 mm2.
Secondly, A 6 GHz series-tuned Armstrong all nMOS LC-tank voltage-controlled oscillator (VCO) is designed and implemented in a 0.18 μm CMOS 1P6M process. The designed circuit topology consists of two single-ended series-tuned Armstrong LC-tank VCOs. At the supply voltage of 1.3 V, the output phase noise of the VCO is -125.88 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 6.06 GHz, and the figure of merit is -192.8 dBc/Hz. Total VCO core power consumption is 7.46 mW. Tuning range is about 370 MHz, from 5.91 GHz to 6.28 GHz, while the control voltage was tuned from 0 V to 2 V. The chip area is 0.977×0.515 mm2.
Finally, we present a dual-band p-core oscillator. The oscillator consists of a dual-resonance LC resonator and a cross-coupled switching transistor pair and it operates at the high-frequency series-resonant mode and at the low-frequency parallel-resonant mode via varactor switching bias. The oscillator can generate differential signals at the high-band 7GHz and at the low-band 2.9GHz. The proposed VCO has been implemented with the TSMC 0.18 μm 1P6M CMOS technology and the core power consumption is 3.003 mW at the dc drain-source bias of 0.65 V. The die area of the dual-band VCO is 0.953×1.0 mm2.

Abstract III 致謝 V Table of ContentsVI List of FiguresVIII List of TablesXI Chapter 1 Introduction1 1.1 Background1 1.2 Thesis Organization3 Chapter 2 Overviews of Voltage Controlled Oscillators and Injection Locked Frequency Divider6 2.1 Introduction6 2.1.1 Negative-Resistance (One-Port) Oscillators6 2.1.2 Feedback (Two-Port) Oscillators11 2.2 The types of Oscillators14 2.2.1 Ring Oscillator14 2.2.2 Relaxation Oscillator15 2.2.3 LC-Tank Oscillators16 2.2.4 Parallel RLC-Tank Oscillators27 2.3 Voltage-Controlled Oscillators28 2.3.1 Important Parameters of VCO29 2.3.2 Phase Noise in Oscillator34 2.3.3 Definition of Phase Noise34 2.3.4 Noise42 2.4 Resistors, Capacitors and Inductors in Semiconductor Technologies47 2.4.1 Resistors47 2.4.2 Capacitors49 2.4.3 MOSFET Varactors50 2.4.4 Inductors and Transformer54 2.5 Principle of Injection-Locked Frequency Dividers66 2.5.1 Switch ILFD70 Chapter 3 72 A Triple-Band Wide-band ÷2 CMOS Injection-Locked Frequency Divider72 3.1 Introduction72 3.2 Circuit Design73 3.3 Measurement Results76 3.4 Conclusion81 Chapter 4 A Novel Differential Series-Tuned Armstrong VCO82 4.1 Introduction82 4.2 Circuit Design83 4.3 Measurement Results85 4.4 Conclusion88 Chapter 5 A P-core Dual-Band Oscillator with Series- and Parallel- Resonant Mode Switching89 5.1 Introduction89 5.2 Circuit Design91 5.3 Measurement Results94 5.4 Conclusion98 Chapter 6 Conclusion99 Reference 101

[1]J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[2]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[3]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[4]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[5]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[6]H.R. Rategh, H. Samavati, T.H. Lee, “A 5 GHz, 1 mW CMOS voltage controlled differential injection locked frequency divider,” Custom Integrated Circuits Conference, pp. 517-520 May 1999
[7]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
[8]A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[9]Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
[10]L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators." IEEE Trans. Circuits Syst. II, vol. 49, pp. 328-338, 2002.
[11]B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, Mar. 1996.
[12]P. Andreani, and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
[13]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[14]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[15]P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[16]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
[17]R. Adler, “A study of locking phenomena in oscillators,” in Proceedings of the IRE, vol. 34, no. 6, pp. 351–357, June 1946.
[18]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[19]A. Bevilacqua et al., “Transformer-based dual-mode voltage-controlled oscillators,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 54, no. 4, pp. 293–297, Apr. 2007.
[20]B. Catli, M. M. Hella, "A 1.94 to 2.55 GHz, 3.6 to 4.77 GHz tunable CMOS VCO based on double-tuned, double-driven coupled resonators," IEEE J. Solid State Circuits, vol.44, no.9, pp.2463-2477, Sept. 2009.
[21]S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, ” A dual-band divide-by-2 Injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Micro. Opti. Tech. Lett., pp.2762-2765, Dec., 2010.
[22]S.-L. Jang, L.-T. Chou, J.-F. Huang, and C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. on Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
[23]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
[24]1. A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[25]2. R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[26]C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans.on Microw. Theory and Tech., vol. 53, no. 3, pp. 881-887, Mar. 2005.
[27]S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
[28]S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 404-406, June, 2009.
[29]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 816-818, Dec. 2009.
[30]N. T. Tchamov, T. Niemi, and N. Mikkola, “High-performance VCO based on Armstrong oscillator topology,” IEEE J. of Solid-State Circuits., vol. 36, no. 1, pp. 139-141, Jan. 2001.
[31]Z. Li and K. K. O, “A low-phase-noise and low-power multi-band CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
[32]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
[33]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.

無法下載圖示 全文公開日期 2017/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE