簡易檢索 / 詳目顯示

研究生: 岳軒宇
Hsuan-Yu Yueh
論文名稱: 次級側相移調變控制 LLC 諧振式轉換器研製
Design and Implementation of a Secondary-Side Phase-shifted Control LLC Resonant Converter
指導教授: 林景源
Jing-Yuan Lin
口試委員: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
龐敏熙
Man-Hay PONG
謝耀慶
Yao-Ching Hsieh
王建民
Jian-Min Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: LLC 諧振式轉換器次級側相移調變控制
外文關鍵詞: LLC resonant converter, Secondary side lead-time control
相關次數: 點閱:404下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目標為對 LLC 諧振式電能轉換器進行優化,研製一台具寬電壓增益範圍且不影響穩態轉換器效率的串聯諧振式直流轉換器。
    本文先從傳統 LLC 諧振式轉換器的動作區間與設計上進行分析,傳統 LLC 諧振式轉換器應用在寬範圍輸入場合下,通常僅能夠透過降低激磁電感來滿足對於操作頻率範圍的需求,然而降低激磁電感會造成額外的損失。因此本文先以體積相同的變壓器,藉由改變氣隙達成不同的激磁電感量的做法對其繞組損耗進行分析與模擬,並探討過去文獻對於改變激磁電感量的方式進行分析與比較;接著提出次級側相移調變控制,該控制方式可以提升 LLC 諧振式轉換器操作低於諧振頻率時的電壓增益,同時不會影響當轉換器操作於諧振點時的效率;另外本文亦探討次級側相移調變控制對於諧振式轉換器的影響,分析過度相移對於電路動作所帶來的影響,利用時域分析法推導出相移邊界。根據傳統 LLC 諧振式轉換器的設計流程與次級側相移控制的相移邊界整合出一優化設計流程,使設計者可以利用輸入規格設計出合理的諧振槽參數。最終本論文利用該設計流程實現輸入電壓為 400 VDC – 290 VDC、輸入電壓為 12 VDC、輸出功率為 1.5 kW,最高效率為97.2 %的 LLC 諧振式直流/直流轉換器。


    The purpose of this dissertation is to implement the LLC resonant converter with wide input voltage range without reducing the overall efficiency. The dissertation analyzed the operation and design procedure of traditional LLC resonant converters. In wide range input applications, traditional LLC resonant converters can only satisfy the frequency range requirements by reducing the excitation inductance, which causes additional losses. Therefore, this dissertation analyzes and simulates the winding loss of a transformer with the same volume by changing the air gap to achieve different excitation inductance levels, and explores previous literature on analyzing and comparing different methods of changing the excitation inductance.
    Then, this dissertation purposed a secondary-side phase-shift control to further improve the voltage gain without reducing the overall efficiency of the LLC resonant converter. Furthermore, this dissertation explores the impact of secondary-side phase-shift control on the resonant converter and analyzes the influence of excessive phase shift on the circuit operation, deriving the phase-shift boundary using time interval analysis. Combining the design process of traditional LLC resonant converters and the phaseshift boundary of secondary-side phase-shift control, this dissertation develops an optimized design process to enable designers to design reasonable resonant tank parameters based on specifications. Last, this paper implements an LLC resonant DC/DC converter with input voltage ranging from 400 VDC to 290 VDC, input voltage of 12 VDC, output power of 1.5 kW, and a maximum efficiency of 97.2%.

    目錄 摘要.................................................. i Abstract............................................. ii 誌謝.................................................. iii 目錄....................................................v 圖目錄................................................ vii 表目錄................................................. xi 第一章 緒論.............................................1 1.1 研究動機與目的 .....................................1 1.2 論文大綱...........................................4 第二章 LLC 諧振式轉換器介紹.............................6 2.1 動作原理...........................................7 2.2 等效交流電阻計算與電壓增益(基本波近似法) ...............11 2.3 優化設計流程 ........................................14 第三章 LLC 諧振式轉換器的激磁電感分析........................................24 3.1 激磁電流對變壓器繞組的影響 ................................................24 3.2 激磁感調變 LLC 諧振式轉換器..............................................31 3.2.1 步階式氣隙變壓器之應用 ............................................31 3.2.2 輔助繞組調變激磁感之應用 ........................................37 第四章 次級側相移調變 LLC 諧振式轉換器介紹...............................43 4.1 LLC 諧振式轉換器電壓增益的分析 (時域分析法)...............44 4.2 次級側相移調變 LLC 諧振式轉換器......................................51 4.2.1 動作區間分析 ................................................51 4.2.2 電壓增益計算 ...................................................58 4.3 提前導通時間 TL對於同步整流開關的影響...........................62 4.3.1 LT-CCM 區間....................................................63 4.3.2 提前導通時間控制的區間邊界 ....................................68 第五章 設計流程與實測驗證 .............................73 5.1 設計流程....................................................73 5.2 電路模擬與實驗結果 .........................................80 第六章 結論與未來展望 .........................................88 6.1 結論........................................................88 6.2 未來展望..............................................88 附錄 2A 基本波近似法推導........................................90 附錄 2B LLC 諧振式轉換器電壓增益推導 (基本波近似法)..............94 附錄 4A 電壓增益推導 (時域分析法).......................................96 附錄 4B 求解操作頻率與解耦時間 (MATLAB) ...............................101 附錄 4C 次級側相移調變 LLC 諧振式轉換器電壓增益推導(時域分析法) .........104 參考文獻..................................................110

    [1] DIGITIMES Research, [Online] Available: https://reurl.cc/1m65oX
    [2] EU Commission Regulation 2019/424 for Energy Efficiency in Server
    Products (ErP Lot 9)
    [3] 80 PLUS Certification [Online] Available:
    https://www.clearesult.com/80plus/
    [4] D. Fu, “Topology Investigation and System Optimization of Resonant
    Converters,”.
    [5] G. Liu, Y. Jang, M. M. Jovanovi, and J. Q. Zhang, “Implementation
    of a 3.3-kW DC–DC Converter for EV On-Board Charger Employing
    the Series-Resonant Converter With Reduced-Frequency-Range
    Control,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4168–4184,
    Jun. 2017, doi: 10.1109/TPEL.2016.2598173.
    [6] A. Mustafa and S. Mekhilef, “Dual Phase LLC Resonant Converter
    with Variable Frequency Zero Circulating Current Phase-Shift
    Modulation for Wide Input Voltage Range Applications,” IEEE Trans.
    Power Electron., vol. 36, no. 3, pp. 2793–2807, Mar. 2021, doi:
    10.1109/TPEL.2020.3015799.
    [7] Y. Wei, Q. Luo, and A. Mantooth, “Hybrid Control Strategy for LLC
    Converter with Reduced Switching Frequency Range and Circulating
    Current for Hold-Up Time Operation,” IEEE Trans. Power Electron.,
    vol. 36, no. 8, pp. 8600–8606, Aug. 2021.
    [8] Y. Wei, Q. Luo, D. Woldegiorgis, H. Mhiesan, and A. Mantooth,
    “Hybrid PWM and PFM Control Strategy for LLC Resonant
    Converter with Hold-up Time Operation Requirement,” in 2020 IEEE
    Transportation Electrification Conference & Expo (ITEC), Chicago,
    IL, USA, Jun. 2020, pp. 291–295.
    [9] M. I. Shahzad, S. Iqbal, and S. Taib, “Interleaved LLC Converter With
    Cascaded Voltage-Doubler Rectifiers for Deeply Depleted PEV
    Battery Charging,” IEEE Trans. Transp. Electrific., vol. 4, no. 1, pp.
    89–98, Mar. 2018, doi: 10.1109/TTE.2017.2753407.
    [10] H. Xu, Z. Yin, Y. Zhao, and Y. Huang, “Accurate Design of HighEfficiency LLC Resonant Converter with Wide Output Voltage,”
    IEEE Access, vol. 5, pp. 26653–26665, 2017.
    [11] J.-H. Kim, C.-E. Kim, J.-K. Kim, J.-B. Lee, and G.-W. Moon,
    “Analysis on Load Adaptive Phase-Shift Control for High Efficiency
    Full-Bridge LLC Resonant Converter in Light Load Conditions,”
    IEEE Trans. Power Electron., pp. 1–1, 2015, doi:
    10.1109/TPEL.2015.2462077.
    [12] S. M. S. I. Shakib and S. Mekhilef, “A Frequency Adaptive Phase
    Shift Modulation Control Based LLC Series Resonant Converter for
    Wide Input Voltage Applications,” IEEE Trans. Power Electron., vol.
    32, no. 11, pp. 8360–8370, Nov. 2017, doi:
    10.1109/TPEL.2016.2643006.
    [13] B. Yang, F. C. Lee, A. J. Zhang and G. Huang, "LLC resonant
    converter for front end DC/DC conversion," IEEE Applied Power
    Electronics Conference and Exposition, Dallas, TX, USA, pp. 1108-
    1112, 2002.
    [14] B. Kim, K. Park, C. Kim, B. Lee and G. Moon, "LLC Resonant
    Converter with Adaptive Link-Voltage Variation for a High-PowerDensity Adapter," in IEEE Transactions on Power Electronics, vol. 25,
    no. 9, pp. 2248-2252, Sept. 2010.
    [15] Y. Liu, “High Efficiency Optimization of LLC Resonant Converter
    for Wide Load Range,”
    [16] C. Person, “Selection of Primary Side Devices for LLC Resonant
    Converters,”
    [17] W. Feng, “State-Trajectory Analysis and Control of LLC Resonant
    Converters,”
    [18] D. Fu, “Topology Investigation and System Optimization of Resonant
    Converters,”
    [19] R.L. Steigerwald: A Comparison of Half Bridge Resonant Converter
    Topologies, IEEE Trans. on Power Electronics, 1988. Pages: 174 -
    182.
    [20] T. Duerbaum: First harmonic approximation including design
    constraints, Telecommunications Energy Conference, 1998.
    INTELEC. Pages: 321 – 328
    [21] H. Huang, “Designing an LLC Resonant Half-Bridge Power
    Converter”. Texas Instruments, Power Supply Design Seminar, 2010.
    [22] Y. Wei, Q. Luo, and A. Mantooth, “Overview of Modulation
    Strategies for LLC Resonant Converter,” IEEE Trans. Power
    Electron., vol. 35, no. 10, pp. 10423–10443, Oct. 2020.
    [23] X. Fang, H. Hu, Z. J. Shen, and I. Batarseh, “Operation Mode
    Analysis and Peak Gain Approximation of the LLC Resonant
    Converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1985–
    1995, Apr. 2012, doi: 10.1109/TPEL.2011.2168545.
    [24] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi,
    “Optimizing the Normalized Dead-Time and Maximum Switching
    Frequency of a Wide-Adjustable-Range LLC Resonant Converter,”
    IEEE Trans. Power Electron., vol. 26, no. 2, pp. 462–472, Feb. 2011,
    doi: 10.1109/TPEL.2010.2068563.
    [25] P. L. Dowell, “Effects of eddy currents in transformer windings,”
    Proc. Inst. Electr. Eng. UK, vol. 113, no. 8, 1966.
    [26] B. Li, Q. Li, and F. C. Lee, “A novel PCB winding transformer with
    controllable leakage integration for a 6.6kW 500kHz high efficiency
    high density bi-directional on-board charger,” in 2017 IEEE Applied
    Power Electronics Conference and Exposition (APEC), Tampa, FL,
    USA, Mar. 2017, pp. 2917–2924. doi: 10.1109/APEC.2017.7931111.
    [27] B. Li, Q. Li, and F. C. Lee, “High-Frequency PCB Winding
    Transformer With Integrated Inductors for a Bi-Directional Resonant
    Converter,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6123–
    6135, Jul. 2019, doi: 10.1109/TPEL.2018.2874806.
    [28] C. Fei, R. Gadelrab, Q. Li, and F. C. Lee, “High-Frequency ThreePhase Interleaved LLC Resonant Converter With GaN Devices and
    Integrated Planar Magnetics,” IEEE J. Emerg. Sel. Topics Power
    Electron., vol. 7, no. 2, pp. 653–663, Jun. 2019.
    [29] Y. Jang, M. M. Jovanovic, and D. L. Dillman, “Hold-up time
    extension Circuit with integrated magnetics,” IEEE Trans. Power
    Electron., vol. 21, no. 2, pp. 394–400, Mar. 2006, doi:
    10.1109/TPEL.2005.869750.
    [30] B.-C. Kim, K.-B. Park, S.-W. Choi, and G.-W. Moon, “LLC series
    resonant converter with auxiliary circuit for hold-up time,” in
    INTELEC 2009 - 31st International Telecommunications Energy
    Conference, Incheon, South Korea, Oct. 2009, pp. 1–4. doi:
    10.1109/INTLEC.2009.5351749.
    [31] M.-Y. Kim, B.-C. Kim, K.-B. Park, and G.-W. Moon, “LLC series
    resonant converter with auxiliary hold-up time compensation circuit,”
    in 8th International Conference on Power Electronics - ECCE Asia,
    Jeju, Korea (South), May 2011, pp. 628–633.
    [32] Bo Yang, Peng Xu, and F. C. Lee, “Range winding for wide input
    range front end DC/DC converter,” in APEC 2001. Sixteenth Annual
    IEEE Applied Power Electronics Conference and Exposition (Cat.
    No.01CH37181), Anaheim, CA, USA, 2001, vol. 1, pp. 476–479. doi:
    10.1109/APEC.2001.911689.
    [33] H. Figge, T. Grote, N. Frohleke, J. Bocker, and F. Schafmeister,
    “Overcurrent protection for the LLC resonant converter with
    improved hold-up time,” in 2011 Twenty-Sixth Annual IEEE Applied
    Power Electronics Conference and Exposition (APEC), Fort Worth,
    TX, USA, Mar. 2011, pp. 13–20. doi: 10.1109/APEC.2011.5744569.
    [34] B.-C. Kim, K.-B. Park, and G.-W. Moon, “Asymmetric PWM Control
    Scheme During Hold-Up Time for $LLC$ Resonant Converter,”
    IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2992–2997, Jul. 2012,
    doi: 10.1109/TIE.2011.2166237.
    [35] J.-Y. Lin, S.-Y. Lee, and H.-Y. Yueh, “LLC resonant converter
    utilizing a step-gap transformer structure for holdup time
    improvement,” Int J Circ Theor Appl, vol. 46, no. 12, pp. 2545–2553,
    Dec. 2018.
    [36] KEUNG, Lee Tai. Hold-up time enhancement circuit for llc resonant
    converter. U.S. Patent Application No 13/860,698, 2013.
    [37] Y. Jeong, G.-W. Moon, and J.-K. Kim, “Analysis on half-bridge LLC
    resonant converter by using variable inductance for high efficiency
    and power density server power supply,” in 2017 IEEE Applied
    Power Electronics Conference and Exposition (APEC), Tampa, FL,
    USA, Mar. 2017, pp. 170–177.
    [38] Wei Chen, Yi-Peng Yan, Yue-Quan Hu, and Qing Lu, “Model and
    design of PCB parallel winding for planar transformer,” IEEE Trans,
    vol. 39, no. 5, pp. 3202–3204, Sep. 2003.
    [39] Wei Chen, Jian-Nong He, Heng-Lian Luo, Yue-Quan Hu, and ChauChun Wen, “Winding loss analysis and new air-gap arrangement for
    high-frequency inductors,” in 2001 IEEE 32nd Annual Power
    Electronics Specialists Conference (IEEE Cat. No.01CH37230),
    Vancouver, BC, Canada, 2001, vol. 4, pp. 2084–2089.
    [40] Xing-koi Mao, Wei Chen, and Yun-Xiu Li, “Winding loss mechanism
    analysis and design for new structure high-frequency gapped inductor,”
    IEEE Trans. vol. 41, no. 10, pp. 4036–4038, Oct. 2005.
    [41] Wang, Bin, Hong-yang Wu, and Chao Yan. "Method and apparatus
    for regulating gain within a resonant converter." U.S. Patent No.
    8,717,783. 6 May 2014.
    [42] Cheng-You Xiao, “Design and Implementation of a Phase Shifted Full
    Bridge Converter”.
    [43] U. Khalid, D. Shu, and H. Wang, “Hybrid Modulated Reconfigurable
    Bidirectional CLLC Converter for V2G Enabled PEV Charging
    Applications,” in 2019 IEEE Applied Power Electronics Conference
    and Exposition (APEC), Anaheim, CA, USA, Mar. 2019, pp. 3332–
    3338

    無法下載圖示
    全文公開日期 2028/04/24 (校外網路)
    全文公開日期 2028/04/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE