簡易檢索 / 詳目顯示

研究生: 武氏進韶
TIEN - THIEU
論文名稱: 成長自組裝單分子膜於透明基板表面以及沉積氧化鋅鋁薄膜於自組裝單分子膜修飾基板之研究
Study the fabrication of self-assembled monolayers (SAMs) on transparent substrates and the deposition of aluminum doped zinc oxide (AZO) thin films on top of the SAMs modified substrates
指導教授: 戴龑
Yian Tai
口試委員: 蔡大翔
Dah-Shyang Tsai
江志強
Jyh-Chiang Jiang
王澤元
Tse-yuan Wang
陶雨臺
Tao, Yu-Tai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 133
中文關鍵詞: Self assembled monolayers (SAMs)aluminum doped zinc oxide (AZO)RF sputteringpolyethylene terephthalate (PET)
外文關鍵詞: Self assembled monolayers (SAMs), aluminum doped zinc oxide (AZO), RF sputtering, polyethylene terephthalate (PET)
相關次數: 點閱:333下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用一個簡單的方法成長有機矽烷自組裝單分子薄膜於透明基板上。特別是PET基板表面可經由化學修飾卻不會受到化學破壞,藉由照射紫外光臭氧燈使得PET基板表面產生大量親水基團,也可使自組裝單分子薄膜中的矽烷基分子排列較為緻密。我們在PET與玻璃基板長上有機矽烷的自組裝單分子薄膜以改變基板表面的官能基、濕潤度和表面張力。
    室溫下以射頻濺鍍沉積AZO薄膜基板,其參數分別在靶材與基板距離為3~7cm,工作壓力控制在2~8mTorr,另外,我們也探討AZO薄膜在提供電子的官能基與接受電子的官能基之自組裝單分子薄膜的效應。在最佳參數20W,基板與靶材距離6cm,工作壓力5mTorr下,沉積AZO薄膜於自組裝單分子修飾過之PET基板,其電阻可從2.29 x 10-3 Ωcm降低至1.12 x 10-3 Ωcm,並且其穿透值在可見光區可達85%。

    自組裝單分子薄膜在透明基板上的性質和azo薄膜的結構、電性與光學性質可藉由接觸角測量儀(CA)、X光光電子能譜儀(XPS)、半接觸式原子力顯微鏡(AFM)、X光繞射儀(XRD)、場發射掃描式電子顯微鏡(SEM)、霍爾量測與紫外光光譜儀來做分析。


    A facile, robust and effective method was used to fabricate organosilane self assembled monolayers (SAMs) on transparent substrates. Specifically, polyethylene terephthalate (PET) substrate surfaces could be chemically modified while avoiding chemical degradation. The results shown that UV – Ozone pretreatment for PET (uv-PET) substrate surfaces used favours a more densed packing of silane molecules in the self assembled processes due to generating a large surface concentration of hydrophilic moieties by UV irradiation. Various substrate surfaces having different functional groups, wettability, and the surface tension were developed by coating organosilane SAMs on PET and glass substrates.
    Aluminium doped zinc oxide (AZO) were deposited on transparent substrates via RF magnetron sputtering at room temperature. The sputtering parameters such as working distance and working pressure were varied from 3 to 7 cm and from 2.0 x 10-3 to 8.0 x 10-3 Torr, respectively. The effects of electron-donating/withdrawing properties of SAM functional groups on property of AZO films have been studied. The resistivity of AZO films deposited on uv-PET was decreased from 2.29 x 10-3 to 1.12 x 10-3 Ωcm by applying SAM modification at optimized conditions of 20W, 6 cm and 5.0 x 10-3 Torr. High optical transmittance of AZO films was also achieved at around 85% in visible wavelength region.
    The properties of SAMs on transparent substrate and the structural, electrical and optical properties of AZO films were characterized by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray Diffraction (XRD), Field-Emission Scanning electron microscope (FE-SEM), Hall measurement and Ultraviolet–visible spectroscopy (UV-Vis).

    Table of contents Abstract I Chinese abstract II Acknowledgements III Table of Contents IV List of Figures VIII List of Tables XIII List of Abbreviation XV Chapter 1. Introduction 4 1.1 Preface 4 1.2 Self-assembled monolayers (SAMs) 5 1.2.1 The advantages of SAMs 6 1.2.2 Applications of SAMs 6 1.2.2.1 Protective coatings 7 1.2.2.2 Wetting and adhesion control 8 1.2.2.3 SAMs as templates for nucleation growth of crystals 9 1.2.2.4 SAMs as model systems for surface chemistry 10 1.2.2.5 Bio-related applications 10 1.2.2.6 Lateral structuring 11 1.2.2.7 Electronic properties 11 1.3 Transparent conductive oxides (TCOs) 12 1.3.1 Application of TCOs 13 1.3.1.1 TCO coatings 13 1.3.1.2 Flat panel displays 14 1.3.1.3 Solar cells 14 1.3.2 Trends in the development of TCO materials 15 1.4 Motivation and Research Objective 16 1.5 The outline of dissertation 23 Chapter 2 Theory 24 2.1 Self-assembled monolayers, mechanism and fabrication 24 2.1.1 SAMs-molecule structure 24 2.1.1.1 Head group 25 2.1.1.2 Backbone 25 2.1.1.3 Terminal Group 26 2.1.2 Mechanism and Kinectics of SAM 27 2.1.2.1 Organosufur (thiol) SAMs on gold substrate 27 2.1.2.2 Organosilane SAMs on Si, glass substrates 27 2.1.2.3 Carboxylic Acid SAMs on Metal, Metal oxide 28 2.1.3 SAM fabrication 28 2.2 AZO thin films, mechanism of thin film growth and fabrication methods 30 2.2.1 Zinc oxide (ZnO) 30 2.2.2 AZO structures 31 2.2.3 Mechanism of thin film growth 32 2.2.3.1 Nucleation and Island formation 32 2.2.3.2 Coalescence 35 2.2.3.3 Thickness Growth 36 2.2.4 Thin film deposition methods 38 2.2.4.1 Electron Beam evaporation 39 2.2.4.2 Sputtering 40 2.2.4.3 Pulsed Laser Deposition (PLD) 41 2.2.4.4 Chemical Vapor Deposition (CVD) 42 2.2.4.5 Chemical Spray Pyrolysis (CSP) 42 2.2.4.6 Sol-gel 43 Chapter 3 Experimental Section 45 3.1 Experiment 45 3.1.1 Materials 45 3.1.2 Experimental procedure 46 3.1.2.1 SAM fabrication 46 3.1.2.2 AZO Thin Film Fabrication 47 3.1.2.3 Operation procedure of RF-sputtering 48 3.2 Characterization Tools 50 3.2.1 Contact Angle Meter 50 Figure 3.6 Contact angle meter. 51 3.2.2 X-ray Photoelectron Spectroscopy (XPS) 51 3.2.3 Ultraviolet-visible spectroscopy (UV - Vis) 52 3.2.4 Atomic Force Microscopy (AFM) 53 3.2.5 Field Emission Scanning Electron Microscopy (FE-SEM) 54 3.2.6 X-ray Diffraction (XRD) 55 3.2.7 Four point probe 56 3.2.8 Hall effect measurement system 57 3.2.9 Transmission Electron Microscopy (TEM) 58 3.2.10 Photoelectron Spectroscopy in Air (AC2) 59 Chapter 4 Results and Discussion 61 4.1 SAMs on transparent substrates 61 4.1.1 SAMs on glass substrates 61 4.1.1.1 Individual SAMs with different functional groups 61 4.1.1.2 Mix (NH2 and CF3) SAM 69 4.1.2 SAMs on PET and up-PET substrates 71 4.1.2.1 PET and uv-PET substrates 71 4.1.2.2 Individual SAMs with different functional groups 72 4.1.2.3 Mix (NH2 and CF3) SAM 88 4.2 AZO films on transparent substrates 91 4.2.1 AZO thin films at different working distances 91 4.2.2 AZO films deposited at different working pressures 95 4.2.2.1 AZO films deposited on PET at different working pressures 95 4.2.2.2 AZO thin films deposited on glass at different working distance 104 4.2.3 AZO thin films deposited on SAMs modified substrates 109 4.2.3.1 AZO films deposited on Silane SAMs modified uv-PET substrates 109 4.2.3.2 AZO films deposited on SAMs modified PET substrates 121 4.2.3.3 AZO films deposited on Silane SAMs modified glass substrates 128

    References

    (1) Kim, H.; Gilmore, C. M.; Horwitz, J. S.; Pique, A.; Murata, H.; Kushto, G. P.; Schlaf, R.; Kafafi, Z. H.; Chrisey, D. B.: Applied Physics Letters 2000, 76, 259-261.
    (2) Kim, J.-M.; Thiyagarajan, P.; Rhee, S.-W.: Thin Solid Films 2010, 518, 5860-5865.
    (3) Langmuir, I.: Journal of the American Chemical Society 1917, 39, 1848-1906.
    (4) Langmuir, I.: Transactions of the Faraday Society 1920, 15, 62-67.
    (5) Blodgett, K. B.: Journal of the American Chemical Society 1935, 57, 1007-1022.
    (6) Blodgett, K. B.; Langmuir, I.: Physical Review 1937, 51, 964-982.
    (7) Bigelow, W. C.; Pickett, D. L.; Zisman, W. A.: Journal of Colloid Science 1946, 1, 513-538.
    (8) Blackman, L. C. F.; Dewar, M. J. S.: Journal of the Chemical Society (Resumed) 1957, 0, 162-165.
    (9) Blackman, L. C. F.; Dewar, M. J. S.: Journal of the Chemical Society (Resumed) 1957, 0, 171-176.
    (10) Clark, J. H.; Macquarrie, D. J.: Chemical Society Reviews 1996, 25, 303-310.
    (11) Mirkin, C. A.; Ratner, M. A.: Annual Review of Physical Chemistry 1992, 43, 719-754.
    (12) Storri, S.; Santoni, T.; Minunni, M.; Mascini, M.: Biosensors and Bioelectronics 1998, 13, 347-357.
    (13) Ulman, A.: Chemical Reviews 1996, 96, 1533-1554.
    (14) Allara, D. L.: Biosensors and Bioelectronics 1995, 10, 771-783.
    (15) Chechik, V.; Crooks, R. M.; Stirling, C. J. M.: Advanced Materials 2000, 12, 1161-1171.
    (16) Bashir, A.: PhD. Dissertation 2008, Ruhr-University Bochum, Pakistan.
    (17) Richard, J.; Barraud, A.; Vandevyver, M.; Ruaudel-Teixier, A.: Thin Solid Films 1988, 159, 207-214.
    (18) Godin, M.: PhD. Dissertation 2004, McGill University, Canada.
    (19) Sagiv, J.: Journal of the American Chemical Society 1980, 102, 92-98.
    (20) Furbeth, W.; Harm, U.; Mangold, K. M.; Juttner, K.: Surface and Coatings Technology 2004, 102, 7-15.
    (21)http://www.gelest.com/goods/pdf/Library/advances/HydrophobicityHydrophilicityandSilanes.pdf.
    (22) Lee, A. Y.; Lee, I. S.; Dette, S. S.; Boerner, J.; Myerson, A. S.: Journal of the American Chemical Society 2005, 127, 14982-14983.
    (23) Lee, A. Y.; Ulman, A.; Myerson, A. S.: Langmuir 2002, 18, 5886-5898.
    (24) Singh, A.; Lee, I. S.; Kim, K.; Myerson, A. S.: CrystEngComm 2011, 13, 24-32.
    (25) Hiremath, R.; Basile, J. A.; Varney, S. W.; Swift, J. A.: Journal of the American Chemical Society 2005, 127, 18321-18327.
    (26) Kang, J. F.; Zaccaro, J.; Ulman, A.; Myerson, A.: Langmuir 2000, 16, 3791-3796.
    (27) Tai, Y.; Sharma, J.; Chang, H.-C.; Tien, T. V. T.; Chiou, Y.-S.: Chemical Communications 2011, 47, 1785-1787.
    (28) Finklea, H. O.: Electroanalytical Chemistry, Bard, A.J.; Rubinstein, I., Eds., Marcel Dekker, New York, 1996.
    (29) Sigal, G. B.; Bamdad, C.; Barberis, A.; Strominger, J.; Whitesides, G. M.: Analytical Chemistry 1996, 68, 490-497.
    (30) Hautman, J.; Klein, M. L.: The Journal of Chemical Physics 1989, 91, 4994-5001.
    (31) Bhatia, R.; Garrison, B. J.: Langmuir 1997, 13, 765-768.
    (32) Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E.: Journal of the American Chemical Society 1993, 115, 9389-9401.
    (33) Schreiber, F.: Progress in Surface Science 2000, 65, 151-256.
    (34) Sawada, S.; Masuda, Y.; Zhu, P.; Koumoto, K.: Langmuir 2005, 22, 332-337.
    (35) Xiang, J.; Zhu, P.; Masuda, Y.; Koumoto, K.: Langmuir 2004, 20, 3278-3283.
    (36) Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.: Applied Physics Letters 1997, 71, 3528-3530.
    (37) Bellingham, J. R.; Phillips, W. A.; Adkins, C. J.: Journal of Materials Science Letters 1992, 11, 263-265.
    (38) Ellmer, K.: Journal of Physics D: Applied Physics 2000, 33, R17-R32.
    (39) Hosono, H.; Yasukawa, M.; Kawazoe, H.: Journal of Non-Crystalline Solids 1996, 203, 334-344.
    (40) http://en.wikipedia.org/wiki/Transparent_conducting_film.
    (41) Minami, T.: MRS Bulletin 2000, 25, 38-44.
    (42) Minami, T.; Yamamoto, T.; Toda, Y.; Miyata, T.: Thin Solid Films 2000, 373, 189-194.
    (43) Ohta, H.; Orita, M.; Hirano, M.; Tanji, H.; Kawazoe, H.; Hosono, H.: Applied Physics Letters 2000, 76, 2740-2742.
    (44) Szyszka, B.; Dewald, W.; Gurram, S. K.; Pflug, A.; Schulz, C.; Siemers, M.; Sittinger, V.; Ulrich, S.: Current Applied Physics 2012, 12, S2-S11.
    (45) Wolf, N.; Gerstenlauer, D.; Manara, J.: Journal of Physics: Conference Series 2012, 395.
    (46) Shahedi, Z.; Hadavi, S.: Iranian Journal of Physics Research 2012, 12, 199-204.
    (47) Liu, H.; Avrutin, V.; Izyumskaya, N.; Ozgr, U.; Morkoc, H.: Superlattices and Microstructures 2010, 48, 458-484.
    (48) No, I. J.; Kim, S. H.; Park, D. W.; Shin, P. K.: Transactions of the Korean Institute of Electrical Engineers 2009, 58, 1976-1981.
    (49) Lee, S.; Tark, S. J.; Kim, C. S.; Jeong, D. Y.; Lee, J. C.; Kim, W. M.; Kim, D.: Current Applied Physics 2013, 13, 836-840.
    (50) Shim, J. H.; Ahn, S. W.; Lee, H. M.: Current Applied Physics 2013.
    (51) Varache, R.; Kleider, J. P.; Gueunier-Farret, M. E.; Korte, L.: Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2013, 178, 593-598.
    (52) Perkins, J.: Solar Energy Technologies Program 2010, U. S. Department of Energy.
    (53) Bae, J. W.; Lee, S. W.; Yeom, G. Y.: Journal of The Electrochemical Society 2007, 154, D34-D37.
    (54) Minami, T.: Semiconductor Science and Technology 2005, 20, S35-S44.
    (55) Cisneros, J. I.: Appl. Opt. 1998, 37, 5262-5270.
    (56) Minami, T.; Nakatani, T.; Miyata, T.: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2000, 18, 1234-1238.
    (57) Fan, J. C. C.; Goodenough, J. B.: Journal of Applied Physics 1977, 48, 3524-3531.
    (58) Gordon, R. G.; Barry, S.; Broomhall-Dillard, R. N. R.; Wagner, V. A.; Wang, Y.:. 2000; Vol. 612; pp D9121-D9126.
    (59) Gordon, R. G.: MRS Bulletin 2000, 25, 52-57.
    (60) Jansseune, T.: Compound Semiconductor 2005, 11, 34-35.
    (61) Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R.: Progress in Photovoltaics: Research and Applications 2008, 16, 235-239.
    (62) Wei, F.: MASc Thesis, University of Toronto, Canada 2010.
    (63) Hu, L.; Hecht, D. S.; Gruner, G.: Applied Physics Letters 2009, 94, 081103-3.
    (64) Hong, S. M., Sung: Nature Nanotechnology 2007, 2, 207-208.
    (65) Lu, J. G.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Wang, L.; Yuan, J.; Zhao, B. H.; Liang, Q. L.: Journal of Applied Physics 2006, 100, 073714-11.
    (66) Chen, M.; Pei, Z. L.; Sun, C.; Wen, L. S.; Wang, X.: Materials Letters 2001, 48, 194-198.
    (67) Purica, M.; Budianu, E.; Rusu, E.; Danila, M.; Gavrila, R.: Thin Solid Films 2002, 403-404, 485-488.
    (68) Khranovskyy, V.; Eriksson, J.; Lloyd-Spetz, A.; Yakimova, R.; Hultman, L.: Thin Solid Films 2009, 517, 2073-2078.
    (69) Myong, S. Y.; Lim, K. S.: Applied Physics Letters 2003, 82, 3026-3028.
    (70) Wen, R.; Wang, L.; Wang, X.; Yue, G. H.; Chen, Y.; Peng, D. L.: Journal of Alloys and Compounds 2010, 508, 370-374.
    (71) Kim, D.-K.; Kim, H.-B.: Journal of Alloys and Compounds 2012, 522, 69-73.
    (72) Tseng, C. H.; Huang, C. H.; Chang, H. C.; Chen, D. Y.; Chou, C. P.; Hsu, C. Y.: Thin Solid Films 2011, 519, 7959-7965.
    (73) Fustin, C.-A.; Duwez, A.-S.: Journal of Electron Spectroscopy and Related Phenomena 2009, 172, 104-106.
    (74) Ferguson, G. S.; Chaudhury, M. K.; Biebuyck, H. A.; Whitesides, G. M.: Macromolecules 1993, 26, 5870-5875.
    (75) Yang, P.; Yang, M.; Zou, S.; Xie, J.; Yang, W.: Journal of the American Chemical Society 2007, 129, 1541-1552.
    (76) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M.: Chemical Reviews 2005, 105, 1103-1170.
    (77) http://www.mtl.kyoto-u.ac.jp/english/laboratory/nanoscopic/nanoscopic.htm.
    (78) Ballav, N.; Terfort, A.; Zharnikov, M.: The Journal of Physical Chemistry C 2009, 113, 3697-3706.
    (79) Raman, A.; Gawalt, E. S.: Langmuir 2007, 23, 2284-2288.
    (80) Raman, A.; Dubey, M.; Gouzman, I.; Gawalt, E. S.: Langmuir 2006, 22, 6469-6472.
    (81) Ulman, A.; Eilers, J. E.; Tillman, N.: Langmuir 1989, 5, 1147-1152.
    (82) Haensch, C.; Hoeppener, S.; Schubert, U. S.: Chemical Society Reviews 2010, 39, 2323-2334.
    (83) Pflaum, J.; Bracco, G.; Schreiber, F.; Colorado Jr, R.; Shmakova, O. E.; Lee, T. R.; Scoles, G.; Kahn, A.: Surface Science 2002, 498, 89-104.
    (84) Bain, C. D.; Evall, J.; Whitesides, G. M.: Journal of the American Chemical Society 1989, 111, 7155-7164.
    (85) Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J.: Nature 2000, 408, 67-69.
    (86) Blomberg, E.; Claesson, P. M.; Konradsson, P.; Liedberg, B.: Langmuir 2006, 22, 10038-10046.
    (87) Yan, L.; Marzolin, C.; Terfort, A.; Whitesides, G. M.: Langmuir 1997, 13, 6704-6712.
    (88) Zhao, X.; Kopelman, R.: The Journal of Physical Chemistry 1996, 100, 11014-11018.
    (89) Tao, Y. T.: Journal of the American Chemical Society 1993, 115, 4350-4358.
    (90) Tao, Y. T.; Lee, M. T.; Chang, S. C.: Journal of the American Chemical Society 1993, 115, 9547-9555.
    (91) http://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett_trough.
    (92) http://en.wikipedia.org/wiki/Spin_coating.
    (93) Kim, S. K.; Jeong, S. Y.; Cho, C. R.: Applied Physics Letters 2003, 82, 562-564.
    (94) Almamun Ashrafi, A. B. M.; Ueta, A.; Avramescu, A.; Kumano, H.; Suemune, I.; Ok, Y. W.; Seong, T. Y.: Applied Physics Letters 2000, 76, 550-552.
    (95) Lee, W.; Dwivedi, R. P.; Hong, C.; Kim, H. W.; Cho, N.; Lee, C.: Journal of Materials Science 2008, 43, 1159-1161.
    (96) Oh, B. Y.; Jeong, M. C.; Moon, T. H.; Lee, W.; Myoung, J. M.; Hwang, J. Y.; Seo, D. S.: Journal of Applied Physics 2006, 99.
    (97) Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P.: Applied Physics Letters 2003, 83, 144-146.
    (98) Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H.: Advanced Materials 2005, 17, 2091-2094.
    (99) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.: Science 2001, 292, 1897-1899.
    (100) Ko, S. C.; Kim, Y. C.; Lee, S. S.; Choi, S. H.; Kim, S. R.: Physical 2003, 103, 130-134.
    (101) Zhan, Z.; Zhang, J.; Zheng, Q.; Pan, D.; Huang, J.; Huang, F.; Lin, Z.: Crystal Growth & Design 2010, 11, 21-25.
    (102) Carel, R.: PhD. Dissertation 1995, Massachusetts Institute of Technology.
    (103) Venables, J. A.: Cambridge University Press, 2000.
    (104) Kaiser, N.: Applied Optics 2002, 41, 3053-3060.
    (105) Thompson, C. V.: Acta Metallurgica 1988, 36, 2929-2934.
    (106) Thornton, J. A.: J Vac Sci Technol 1974, 11, 666-670.
    (107) Messier, D. R.; Giri, A. P.; Roy, R. A.: J. Vac. Sci. Technol. A 1984, 2, 500-503.
    (108) Thornton, J. A.: . Vac. Sci. Technol. A 1984, 4, 3059-3065.
    (109) http://www.tungsten.com/tipsbeam.pdf.
    (110) http://www.uccs.edu/~tchriste/courses/PHYS549/549lectures/sputtertech.html.
    (111) http://en.wikipedia.org/wiki/Pulsed_laser_deposition.
    (112) http://en.wikipedia.org/wiki/Chemical_vapor_deposition.
    (113) Hench, L. L.; West, J. K.: Chemical Reviews 1990, 90, 33-72.
    (114) www.uio.no/studier/emner/matnat/.../10KJM5100_2006_sol_gel_d.pdf‎.
    (115) Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D.: Analytica Chimica Acta 2006, 568, 84-108.
    (116) Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K. Y.: Advanced Materials 2008, 20, 2376-2382.
    (117) Onclin, S.; Mulder, A.; Huskens, J.; Ravoo, B. J.; Reinhoudt, D. N.: Langmuir 2004, 20, 5460-5466.
    (118) Kang, J. F.; Ulman, A.; Liao, S.; Jordan, R.; Yang, G.; Liu, G.-y.: Langmuir 2000, 17, 95-106.
    (119) Shyue, J.-J.; De Guire, M. R.; Nakanishi, T.; Masuda, Y.; Koumoto, K.; Sukenik, C. N.:. Langmuir 2004, 20, 8693-8698.
    (120) Janssen, D.; De Palma, R.; Verlaak, S.; Heremans, P.; Dehaen, W.: Thin Solid Films 2006, 515, 1433-1438.
    (121) Flink, S.; van Veggel, F. C. J. M.; Reinhoudt, D. N.: Journal of Physical Organic Chemistry 2001, 14, 407-415.
    (122) W. A, Z.: AMERICAN CHEMICAL SOCIETY, 1964; Vol. 43; pp 1-51.
    (123) Vig, J. R.: J. Vac. Sci. Technol. A 1985, 3, 1027–1034.
    (124) Yan, C.; Kim, K.-S.; Lee, S.-K.; Bae, S.-H.; Hong, B. H.; Kim, J.-H.; Lee, H.-J.; Ahn, J.-H.: ACS Nano 2011, 6, 2096-2103.
    (125) http://www.accudynetest.com/polymer_surface_data/pet.pdf.
    (126) Hoque, E.; DeRose, J. A.; Hoffmann, P.; Bhushan, B.; Mathieu, H. J.: The Journal of Physical Chemistry C 2007, 111, 3956-3962.
    (127) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D.: Perkin-Elmer Corp, Eden Prairie, MN, 1992. .
    (128) Jagst, E.: MSc. Dissertation 2010, Free University of Berlin.
    (129) Song, D.; Aberle, A. G.; Xia, J.: Applied Surface Science 2002, 195, 291-296.
    (130) Park, K. C.; Ma, D. Y.; Kim, K. H.: Thin Solid Films 1997, 305, 201-209.
    (131) Cullity, B. D.: Elements of X-ray Diffraction. Addison-Wesley 1978, 2nd, 102.
    (132) Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S.: Applied Surface Science 2000, 158, 134-140.
    (133) C.D. Wagner, W. M. R., L.E. Davis, J.F. Moulder, G.E. Muilenberg: Handbook of X-ray Photoelectron Spectoscopy. PerkinElmer Corporatio, Eden Prairie, Mn 1979, 50–51.
    (134) Deshpande, S. V.; Gulari, E.; Brown, S. W.; Rand, S. C.: Journal of Applied Physics 1995, 77, 6534-6541.
    (135) Qiu, Y.; Li, W.; Wu, M.; Fu, J.; Jiang, Y.: 2010, 76585E-76585E.
    (136) Suchea, M.; Christoulakis, S.; Katsarakis, N.; Kitsopoulos, T.; Kiriakidis, G.: Thin Solid Films 2007, 515, 6562-6566.
    (137) Marotti, R. E.; Giorgi, P.; Machado, G.; Dalchiele, E. A.: Solar Energy Materials and Solar Cells 2006, 90, 2356-2361.
    (138) Fernandez, S.; Naranjo, F. B.: Solar Energy Materials and Solar Cells 2010, 94, 157-163.
    (139) Saran, N.; Parikh, K.; Suh, D.-S.; Munoz, E.; Kolla, H.; Manohar, S. K.: Journal of the American Chemical Society 2004, 126, 4462-4463.

    QR CODE