簡易檢索 / 詳目顯示

研究生: 蔡承佑
Chen-Yu Tsai
論文名稱: 高導電耐腐蝕鈦基氧化物載體承載鉑觸媒於氧還原反應之研究
Study on highly conductive and anti-corrosion Ti oxide supported Pt catalysts for oxygen reduction reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 陳景翔
none
蘇威年
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 202
中文關鍵詞: 高導電性TEOS處理方法氧氣還原反應
外文關鍵詞: Highly-conductive, TEOS method, Oxygen reduction reaction
相關次數: 點閱:501下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究製備高導電性二氧化鈦(TiO2)作為載體並承載鉑(Pt)觸媒,進行陰極氧氣還原反應的探討。首先,以溶熱法(solvothermal)製備奈米級TiO2,利用TEOS處理方法將SiO2包覆TiO2顆粒,以抑制氫氣還原熱處理過程中TiO2顆粒的聚集。
電化學活性測量的結果發現,有TEOS處理且在850oC下,經氫氣還原熱處理的TiO2載體上(20%Pt/850FATST) 承載之Pt觸媒有較好的氧氣還原電催化活性。在0.9 V (vs NHE)下的電流密度為0.2075 mA/cm2,此歸因於有TEOS處理之TiO2載體,在熱處理後保持較高之表面積和良好的導電度,且由X光吸收光譜的結果證實,20%Pt/850FATST中Pt觸媒5d軌域電子較飽滿,此有助於提升氧氣還原電催化能力,而相較於同系列其他觸媒,具有最佳氧氣還原電催化能力。電化學穩定性測試顯示20%Pt/850FATST觸媒相較於JM20,有較佳的電催化穩定性及抗腐蝕能力。


In this work, highly-conductive TiO2 supported Pt catalysts were prepared for improving the electrochemical performance of oxygen reduction reaction (ORR). First, TiO2 nanoparticles were synthesized by a solvothermal method, and followed by SiO2 coating the TiO2 nanoparticle surface by using the tetraethylorthosilicate method (TEOS) in order to inhibit the particle growth during thermal treatment.
The electrochemical performance shows that the TiO2 support, treated by TEOS process and H2 reduction at 850℃, supported Pt catalyst (20%Pt/850FATST) exhibits the better activity in which the catalyst possesses a maximum specific current density of 0.2075 mA/cm2 at 0.9 V (vs. NHE) in the ORR. Such performance is attributed to the higher surface area remain for treated TiO2 and the improved electrical conductivity. Moreover, X-ray absorption spectroscopy (XAS) demonstrates that a higher electronic population of the Pt 5d-orbital for 20%Pt/850FATST which can improve the ORR activity, compared to the other series of the catalysts. Durability test shows that 20%Pt/850FATST has better stability and anti-corrosive ability compared to the commercial Pt catalyst (JM20).

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 燃料電池之發展及趨勢 3 1.3 燃料電池種類 4 1.4 質子交換膜燃料電池 (PEMFC) 7 1.4.1 工作原理 7 1.4.2 電池的結構 8 1.4.3 質子交換膜 10 1.4.4 PEMFC陽極觸媒(PEMFC Athode Catalyst) 13 1.4.5 PEMFC陰極觸媒(PEMFC Cathode Catalyst) 14 1.5 核殼型複合奈米粒子的介紹 18 1.6 研究動機與目的 20 第二章 文獻回顧 22 2.1 載體的應用 22 2.2 碳載體觸媒 23 2.3 金屬氧化物觸媒載體 28 2.3.1 TiO2摻雜金屬氧化物之載體開發 30 2.3.2 Ti4O7載體開發 34 2.4 以TEOS處理包覆奈米粒子之應用 40 第三章 實驗設備與方法 47 3.1 實驗設備 47 3.2 實驗藥品 48 3.3 實驗步驟- TEOS表面修飾法 50 3.3.1 以溶熱法(solvothermal)合成之二氧化鈦 51 3.3.2 以TEOS修飾TiO2 52 3.3.3 純氫還原步驟 53 3.3.4 以2%HF洗淨SiO2 54 3.3.5 微波輔助乙二醇還原法(Micrcowave -assisted Ethylene glycol Reduction method) 54 3.5 電化學漿料調配 58 3.6 材料鑑定與分析 59 3.6.1 X射線繞射儀(XRD) 59 3.6.2 掃描式電子顯微鏡(SEM) 63 3.6.3 穿透式電子顯微鏡 (TEM) 66 3.6.4 能量分散光譜儀(EDX) 68 3.6.5 感應偶合電漿光譜儀(ICP-AES) 69 3.6.6 熱重分析儀 (Thermogravimetric) 69 3.6.7 拉曼散射光譜(Raman spectrum) 70 3.6.8 四點探針導電度量測儀(Four-Point Probe system) 72 3.6.9 表面積測定儀 73 3.6.10 X光吸收光譜原理 81 3.6.11 電化學原理 92 第四章 結果 103 4.1 TEOS抑制效果探討 103 4.1.1 TEOS處理前後二氧化鈦表面結構之變化 103 4.1.2 自合成二氧化鈦載體之XRD分析 104 4.1.3 以SEM觀察TEOS處理前後及不同鍛燒溫度之型態差異 110 4.1.4 TEOS處理前後表面積之差異 112 4.1.5 導電度量測 115 4.1.6 二氧化鈦載體承載Pt觸媒之晶相分析 117 4.1.7 Pt觸媒含量分析 119 4.1.8 X光吸收近邊緣結構 119 4.1.9 20Pt-FATST-TiO2之氧氣還原反應活性 126 第五章 綜合討論 164 5.1 TEOS抑制效果探討 164 5.1.1 經有/無TEOS處理之二氧化鈦載體特性分析 164 5.1.2 不同二氧化鈦載體相結構觸媒對電化學活性之影響 167 5.1.3 使用於陰極氧氣還原反應之活性比較 168 第六章 結論 171 6.1 TEOS抑制結果 171 第七章 未來展望 174 第八章 參考文獻 175  

(1) Emst, M. The Woods Hole Research Center 2010.
(2) Paganin, V. A.; Oliveira, C. L. F.; Ticianelli, E. A.; Springer, T. E.; Gonzalez, E. R. Electrochimica Acta 1998, 43, 3761.
(3) 黃鎮江 全華科技圖書出版 2005.
(4) Carrette, L.; Friedrich, K. A.; Stimming, U. ChemPhysChem 2000, 1, 163.
(5) Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R.; Narasimhan, S. International Journal of Hydrogen Energy 2010, 35, 6356.
(6) Smitha, B.; Sridhar, S.; Khan, A. A. Journal of Membrane Science 2005, 259, 10.
(7) de Bruijn, F. A.; Makkus, R. C.; Mallant, R. K. A. M.; Janssen, G. J. M. In Advances in Fuel Cells 2007; Vol. 1, p 235.
(8) Rikukawa, M.; Sanui, K. Progress in Polymer Science (Oxford) 2000, 25, 1463.
(9) Chen, P. Y.; Chiu, C. P.; Hong, C. W. Journal of Power Sources 2009, 194, 746.
(10) Wang, B. Journal of Power Sources 2005, 152, 1.
(11) Wroblowa, H. S.; Yen Chi, P.; Razumney, G. Journal of Electroanalytical Chemistry 1976, 69, 195.
(12) Lai, F. J.; Sarma, L. S.; Chou, H. L.; Liu, D. G.; Hsieh, C. A.; Lee, J. F.; Hwang, B. J. Journal of Physical Chemistry C 2009, 113, 12674.
(13) Stamenković, V.; Mayrhofer, K. J. J.; Mun, B. S.; Marenz; Blizanac, B. B.; Ross, P. N.; Marković, N. M. In Proceedings - Electrochemical Society 2004; Vol. PV 2004-18, p 220.
(14) Hwang, B. J.; Kumar, S. M. S.; Chen, C. H.; Monalisa; Cheng, M. Y.; Liu, D. G.; Lee, J. F. Journal of Physical Chemistry C 2007, 111, 15267.
(15) Ferreira, P. J.; La O, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. Journal of the Electrochemical Society 2005, 152, A2256.
(16) Antolini, E. Materials Chemistry and Physics 2003, 78, 563.
(17) 陳東煌 化工技術 2003, 11(3).
(18) Aricò, A. S.; Antonucci, P. L.; Modica, E.; Baglio, V.; Kim, H.; Antonucci, V. Electrochimica Acta 2002, 47, 3723.
(19) 許寧逸 化工技術 2007, 第15卷第12期.
(20) Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein Journal of Nanotechnology 2014, 5, 44.
(21) Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. ACS Catalysis 2012, 2, 832.
(22) Antolini, E. Applied Catalysis B: Environmental 2009, 88, 1.
(23) Ma, X.; Meng, H.; Cai, M.; Shen, P. K. Journal of the American Chemical Society 2012, 134, 1954.
(24) Sharma, S.; Pollet, B. G. Journal of Power Sources 2012, 208, 96.
(25) Yuan, H.; Guo, D.; Qiu, X.; Zhu, W.; Chen, L. Journal of Power Sources 2009, 188, 8.
(26) Ho, V. T. T.; Nguyen, N. G.; Pan, C. J.; Cheng, J. H.; Rick, J.; Su, W. N.; Lee, J. F.; Sheu, H. S.; Hwang, B. J. Nano Energy 2012, 1, 687.
(27) Wang, Y. J.; Wilkinson, D. P.; Zhang, J. Chemical Reviews 2011, 111, 7625.
(28) Chen, J. M.; Sarma, L. S.; Chen, C. H.; Cheng, M. Y.; Shih, S. C.; Wang, G. R.; Liu, D. G.; Lee, J. F.; Tang, M. T.; Hwang, B. J. Journal of Power Sources 2006, 159, 29.
(29) Tian, J.; Sun, G.; Jiang, L.; Yan, S.; Mao, Q.; Xin, Q. Electrochemistry Communications 2007, 9, 563.
(30) Huang, S. Y.; Ganesan, P.; Park, S.; Popov, B. N. Journal of the American Chemical Society 2009, 131, 13898.
(31) Huang, S. Y.; Ganesan, P.; Popov, B. N. Applied Catalysis B: Environmental 2011, 102, 71.
(32) Park, K. W.; Lee, Y. W.; Oh, J. K.; Kim, D. Y.; Han, S. B.; Ko, A. R.; Kim, S. J.; Kim, H. S. Journal of Industrial and Engineering Chemistry 2011, 17, 696.
(33) Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C. Journal of Physical Chemistry B 2006, 110, 927.
(34) Shanmugam, S.; Gedanken, A. Journal of Physical Chemistry C 2009, 113, 18707.
(35) García, B. L.; Fuentes, R.; Weidner, J. W. Electrochemical and Solid-State Letters 2007, 10, B108.
(36) Chevallier, L.; Bauer, A.; Cavaliere, S.; Hui, R.; Rozière, J.; Jones, D. J. ACS Applied Materials and Interfaces 2012, 4, 1752.
(37) Lo, C. P.; Wang, G.; Kumar, A.; Ramani, V. Applied Catalysis B: Environmental 2013, 140-141, 133.
(38) Thanh Ho, V. T.; Pillai, K. C.; Chou, H. L.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J.; Lee, J. F.; Sheu, H. S.; Chuang, W. T. Energy and Environmental Science 2011, 4, 4194.
(39) Ho, V. T. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J. Journal of the American Chemical Society 2011, 133, 11716.
(40) Wang, D.; Subban, C. V.; Wang, H.; Rus, E.; Disalvo, F. J.; Abruña, H. D. Journal of the American Chemical Society 2010, 132, 10218.
(41) Bartholomew, R. F.; Frankl, D. R. Physical Review 1969, 187, 828.
(42) Vračar, L. M.; Krstajić, N. V.; Radmilović, V. R.; Jakšić, M. M. Journal of Electroanalytical Chemistry 2006, 587, 99.
(43) Ioroi, T.; Senoh, H.; Siroma, Z.; Yamazaki, S.; Fujiwara, N.; Yasuda, K. In ECS Transactions; 1 PART 2 ed. 2007; Vol. 11, p 1041.
(44) Zhu, R.; Liu, Y.; Ye, J.; Zhang, X. Journal of Materials Science: Materials in Electronics 2013, 24, 4853.
(45) Yao, C.; Li, F.; Li, X.; Xia, D. Journal of Materials Chemistry 2012, 22, 16560.
(46) Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Nature Communications 2014, 5.
(47) Wu, N. L.; Wang, S. Y.; Rusakova, I. A. Science 1999, 285, 1375.
(48) Kha, N. M.; Chen, C. H.; Su, W. N.; Rick, J.; Hwang, B. J. Physical Chemistry Chemical Physics 2015, 17, 21226.
(49) Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H.; Mun, B. S.; Lee, K. S.; Lee, N. S.; Yoo, S. J.; Lim, D. H.; Kang, K.; Sung, Y. E.; Hyeon, T. Journal of the American Chemical Society 2015, 137, 15478.
(50) Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. ACS Catalysis 2015, 5, 2903.
(51) Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. Journal of the American Chemical Society 2004, 126, 8028.
(52) Ngo, T. T.; Yu, T. L.; Lin, H. L. Journal of Power Sources 2013, 225, 293.
(53) Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. Journal of The American Chemical Society 1940, 62, 1723.
(54) Tran, T. D.; Langer, S. H. Analytical Chemistry 1993, 65, 1805.
(55) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Journal of Physical Chemistry B 2004, 108, 10955.
(56) Stoyanov, E.; Langenhorst, F.; Steinle-Neumann, G. American Mineralogist 2007, 92, 577.
(57) Li, X.; Zhu, A. L.; Qu, W.; Wang, H.; Hui, R.; Zhang, L.; Zhang, J. Electrochimica Acta 2010, 55, 5891.
(58) Kucheyev, S. O.; Van Buuren, T.; Baumann, T. F.; Satcher Jr, J. H.; Willey, T. M.; Meulenberg, R. W.; Felter, T. E.; Poco, J. F.; Gammon, S. A.; Terminello, L. J. Physical Review B - Condensed Matter and Materials Physics 2004, 69, 245102.

QR CODE