簡易檢索 / 詳目顯示

研究生: 張信德
Hsin-Te Chang
論文名稱: 誘導軟模板形成氮摻雜鎳單原子位點觸媒應用於電催化二氧化碳之還原
Soft Template Derived Porous N-coordinated Nickel Single Atom Catalyst for Electrochemical CO2 Reduction Reaction
指導教授: 王丞浩
Chen-Hao Wang
林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
口試委員: 陳貴賢
Kuei-Hsien Chen
黃信智
SHEN-ZHI HUANG
吳恆良
Heng-Liang Wu
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 電催化軟模板鎳單原子觸媒二氧化碳還原流體電池
外文關鍵詞: Electrocatalysis, Soft template, Nickel single-atom catalyst, Carbon dioxide reduction, Flow cell
相關次數: 點閱:248下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用了一種聚合物-水凝膠策略製備氮配位鎳單原子催化劑的方法。該方法在碳材料上成功合成了均勻原子分散的氮配位鎳位點。在這種方法中,以吡咯(py)作為聚合單體,過硫酸銨(APS)作為聚合反應引發劑。同時,添加十二烷基硫酸鈉(SDS)以誘導吡咯形成多孔性凝膠軟模板。相較於傳統模板方法須使用強酸去除模板,軟模板具有易於去除和環保等優點。此外,在退火後形成的單原子催化劑即可達到高效能,無需進行酸處理,這使得該方法具有廣泛的應用潛力。SDS 的添加還有助於最小化催化劑的尺寸,並增加活性位點的密度。這種氮配位鎳單原子催化劑在電化學 CO 生成反應中表現出優異的性能。在電位為-0.47V 時,該催化劑已經達到 90%以上的 CO 法拉第效率。當電位為-0.77V 時,CO 法拉第效率可達到最大的97%。此外,在電位為-0.97V 時,該催化劑表現出高達 170mA 的電流密度。


This research report presents a method for synthesizing nitrogencoordinated nickel single-atom catalysts using a polymer-water gel strategy. The method successfully achieves uniform atomic dispersion of nitrogen-coordinated nickel sites on carbon materials. In this approach, pyrrole (py) serves as the polymerization monomer, while ammonium persulfate (APS) acts as the polymerization initiator. Additionally, the
addition of sodium dodecyl sulfate (SDS) induces the formation of a porous gel soft template to guide pyrrole into a gel state. Compared to traditional template methods that require strong acids for template removal, the soft template offers advantages such as easy removal and environmental friendliness. Moreover, the resulting single-atom catalyst, obtained after annealing, exhibits high efficiency without the need for acid treatment, making this method highly promising for various applications. The inclusion of the SDS also helps minimize the catalyst's size and increase the density of the active sites. This nitrogen-coordinated nickel single-atom catalyst demonstrates excellent performance in the electrochemical CO generation reaction. At
a potential of -0.47V, the catalyst achieves a CO Faradaic efficiency of over 90%. At a potential of -0.77V, the CO Faradaic efficiency reaches a maximum of 97%. Furthermore, at a potential of -0.97V, the catalyst exhibits a high current density of up to 170mA.

目錄 中文摘要 ............ I Abstract..............II 誌謝...................III 目錄....................V 圖目錄.............VII 表目錄.............. XI 第一章 緒論 ......1 1.1 前言 ...1 第二章 文獻回顧 ..........................................6 2.1 電化學還原的基本參數................6 2.2 催化劑在二氧化碳還原中的內含性質與下活性位點的作用..9 2.3 電化學電池的配置......................14 2.4 環境影響 .....................................20 2.5 Single Atom catalysts (SACs) 單原子觸媒..............................31 2.6 研究動機....................................37 第三章 實驗步驟與方法 ............................39 3.1 實驗藥品與材料..........................39 3.2 實驗儀器設備..............................40 3.3 儀器分析原理..............................41 3.4 實驗步驟 .....................................59 第四章 結果與討論 ....................................62 4.1 觸媒選擇與性質分析..................62 4.2 表徵分析 .....................................65 4.3 產率分析及電化學表現..............77 第五章 結論 ....84 第六章 參考文獻 ........................................85

[1] Zhang, H., C. He, S. Han, Z. Du, L. Wang, Q. Yun, W. Cao, B. Zhang, Y.-H. Tian
and Q. Lu (2022). "Crystal facet-dependent electrocatalytic performance of metallic
Cu in CO2 reduction reactions." Chinese Chemical Letters 33(8): 3641-3649.
[2] De Gregorio, G. L., T. Burdyny, A. Loiudice, P. Iyengar, W. A. Smith and R.
Buonsanti (2020). "Facet-Dependent Selectivity of Cu Catalysts in Electrochemical
CO2 Reduction at Commercially Viable Current Densities." ACS Catalysis 10(9):
4854-4862.
[3] Gao, T., X. Wen, T. Xie, N. Han, K. Sun, L. Han, H. Wang, Y. Zhang, Y. Kuang and X.
Sun (2019). "Morphology effects of bismuth catalysts on electroreduction of carbon
dioxide into formate." Electrochimica Acta 305: 388-393.
[4] Liang, S., N. Altaf, L. Huang, Y. Gao and Q. Wang (2020). "Electrolytic cell design
for electrochemical CO2 reduction." Journal of CO2 Utilization 35: 90-105.
[5] Ma, D., T. Jin, K. Xie and H. Huang (2021). "An overview of flow cell architecture
design and optimization for electrochemical CO 2 reduction." Journal of Materials
Chemistry A 9(37): 20897-20918.
[6] Wang, P., H. Yang, Y. Xu, X. Huang, J. Wang, M. Zhong, T. Cheng and Q. Shao
(2021). "Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO2
Reduction to C2+ Liquids." ACS Nano 15(1): 1039-1047.
[7] Peng, X., S. G. Karakalos and W. E. Mustain (2018). "Preferentially Oriented Ag
Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2
Electrochemical Reduction to CO." ACS Applied Materials & Interfaces 10(2): 1734-
1742.
[8] Liang, S., N. Altaf, L. Huang, Y. Gao and Q. Wang (2020). "Electrolytic cell design
for electrochemical CO2 reduction." Journal of CO2 Utilization 35: 90-105.
[9] Wu, J., P. P. Sharma, B. H. Harris and X.-D. Zhou (2014). "Electrochemical reduction
of carbon dioxide: IV dependence of the Faradaic efficiency and current density on
the microstructure and thickness of tin electrode." Journal of Power Sources 258:
189-194.
[10] Delacourt, C., P. L. Ridgway, J. B. Kerr and J. Newman (2008). "Design of an
Electrochemical Cell Making Syngas  ( CO + H2 )  from CO2 and H2O Reduction at
Room Temperature." Journal of The Electrochemical Society 155(1): B42.
[11] Liang, S., N. Altaf, L. Huang, Y. Gao and Q. Wang (2020). "Electrolytic cell design
for electrochemical CO2 reduction." Journal of CO2 Utilization 35: 90-105.
[12] Yang, K., R. Kas, W. A. Smith and T. Burdyny (2021). "Role of the Carbon-Based
Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical
CO2 Reduction." ACS Energy Letters 6(1): 33-40.
[13] Xing, Z., L. Hu, D. S. Ripatti, X. Hu and X. Feng (2021). "Enhancing carbon dioxide
gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment."
Nature Communications 12(1): 136.
[14] Bondue, C. J., M. Graf, A. Goyal and M. T. M. Koper (2021). "Suppression of
Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction." Journal
of the American Chemical Society 143(1): 279-285.
[15] Murata, A. and Y. Hori (1991). "Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode." Bulletin of the Chemical
Society of Japan 64(1): 123-127.
[16] Singh, M. R., Y. Kwon, Y. Lum, J. W. Ager, III and A. T. Bell (2016). "Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu."
Journal of the American Chemical Society 138(39): 13006-13012.
[17] Moura de Salles Pupo, M. and R. Kortlever (2019). "Electrolyte effects on the
electrochemical reduction of CO2." ChemPhysChem 20(22): 2926-2935.
[18] Mardle, P., S. Cassegrain, F. Habibzadeh, Z. Shi and S. Holdcroft (2021).
"Carbonate Ion Crossover in Zero-Gap, KOH Anolyte CO2 Electrolysis." The Journal of
Physical Chemistry C 125(46): 25446-25454.
[19] Xu, Y., J. P. Edwards, S. Liu, R. K. Miao, J. E. Huang, C. M. Gabardo, C. P. O’Brien, J.
Li, E. H. Sargent and D. Sinton (2021). "Self-Cleaning CO2 Reduction Systems:
Unsteady Electrochemical Forcing Enables Stability." ACS Energy Letters 6(2): 809-
815.
[20] Varela, A. S., W. Ju, T. Reier and P. Strasser (2016). "Tuning the Catalytic Activity
and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides." ACS
Catalysis 6(4): 2136-2144.
[21] Zeng, J., M. Fontana, A. Sacco, D. Sassone and C. F. Pirri (2022). "A study of the
effect of electrode composition on the electrochemical reduction of CO2." Catalysis
Today 397-399: 463-474.
[22] Niu, Z.-Z., L.-P. Chi, R. Liu, Z. Chen and M.-R. Gao (2021). "Rigorous assessment
of CO 2 electroreduction products in a flow cell." Energy & Environmental Science
14(8): 4169-4176.
[23] Pei, Y., H. Zhong and F. Jin (2021). "A brief review of electrocatalytic reduction of CO2—Materials, reaction conditions, and devices." Energy Science & Engineering
9(7): 1012-1032.
[24] Zhang, J., W. Cai, F. X. Hu, H. Yang and B. Liu (2021). "Recent advances in single
atom catalysts for the electrochemical carbon dioxide reduction reaction." Chemical
Science 12(20): 6800-6819.
[25] Zhao, C., X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y.
Li (2017). "Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites
for Efficient Electroreduction of CO2." Journal of the American Chemical Society
139(24): 8078-8081.
[26] Pan, F., B. Li, E. Sarnello, Y. Fei, Y. Gang, X. Xiang, Z. Du, P. Zhang, G. Wang, H. T.
Nguyen, T. Li, Y. H. Hu, H.-C. Zhou and Y. Li (2020). "Atomically Dispersed Iron–
Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene
Nanoribbon Networks for CO2 Reduction." ACS Nano 14(5): 5506-5516.
[27] Guan, A., Z. Chen, Y. Quan, C. Peng, Z. Wang, T.-K. Sham, C. Yang, Y. Ji, L. Qian, X.
Xu and G. Zheng (2020). "Boosting CO2 Electroreduction to CH4 via Tuning
Neighboring Single-Copper Sites." ACS Energy Letters 5(4): 1044-1053.
[28] Zhai, P., X. Gu, Y. Wei, J. Zuo, Q. Chen, W. Liu, H. Jiang, X. Wang and Y. Gong
(2021). "Enhanced mass transfer in three-dimensional single-atom nickel catalyst with
open-pore structure for highly efficient CO2 electrolysis." Journal of Energy Chemistry
62: 43-50.
[29] Li, P., Z. Jin, Z. Fang and G. Yu (2021). "A single-site iron catalyst with
preoccupied active centers that achieves selective ammonia electrosynthesis from
nitrate." Energy & environmental science 14(6): 3522-3531.
[30] Raja, P. B., K. R. Munusamy, V. Perumal and M. N. M. Ibrahim (2022).
Characterization of nanomaterial used in nanobioremediation. Nano-bioremediation:
fundamentals and applications, Elsevier: 57-83.
[31] wikipedia.org/wiki/Scanning_electron_microscope
[32] Salouti, M. and F. K. Derakhshan (2019). Phytosynthesis of nanoscale materials.
Advances in Phytonanotechnology, Elsevier: 45-121.
[33]https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Te
xtbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectr
oscopy/X-ray_Spectroscopy/XAS_-_Theory
[34] Pourhakkak, P., A. Taghizadeh, M. Taghizadeh, M. Ghaedi and S. Haghdoust
(2021). Fundamentals of adsorption technology. Interface Science and Technology,
Elsevier. 33: 1-70.
[35] Singh, M. and A. Singh (2022). "Chapter 14—Nuclear magnetic resonance
spectroscopy." Characterization of Polymers and Fibres; Singh, MK, Singh, A., Eds:
321-339.
[36] Idesaki, A. and P. Colombo (2012). "Synthesis of a Ni‐containing porous SiOC
material from polyphenylmethylsiloxane by a direct foaming technique." Advanced
Engineering Materials 14(12): 1116-1122.

無法下載圖示
全文公開日期 2025/08/28 (校外網路)
全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE