簡易檢索 / 詳目顯示

研究生: 劉彥廷
Yan-Ting Liu
論文名稱: 改善負載暫態響應之雙模式控制降壓型轉換器
Dual Mode Control Buck Converter for Improved Load-Transient-Response
指導教授: 林景源
Jing-Yuan Lin
口試委員: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
張佑丞
Yu–Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 60
中文關鍵詞: 漣波固定導通時間控制電壓磁滯控制雙模式控制加快暫態響應降壓型轉換器
外文關鍵詞: Ripple Based Constant On Time Control, Voltage Hysteretic Control, Dual Mode Control, Improved Transient Response, Buck Converter
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在目前的科技世代裡,手機、平板等手持式裝置是普遍必須的產品,而這些產品多數以電池作為一個能源的供應。一般情況下,這類產品的內部電路所需要之電壓必須利用降壓型轉換器來將相對較高的電池電壓進行降壓轉換。本論文提出「改善負載暫態響應之雙模式控制降壓型轉換器」,同時使用漣波固定導通時間控制法與電壓磁滯控制法所形成的雙模式控制,以結合電壓磁滯控制模式之優點,來達到改善負載暫態響應的功能,並且提出因責任週期全開所導致之電壓過衝/下衝的改善方法,其使用電流感測電路,對電感電流與負載電流進行偵測,來計算出因輸出負載變動導致輸出電壓降低之時間,並根據此時間來調整暫態時之責任週期,來使輸出電壓快速回至穩態之電壓。本論文採用 TSMC 0.18 μm 1P6M CMOS 製程實現,晶片內部包含輸入/輸出焊墊(I/O PADs)面積為1.545 × 1.417 mm2。本論文操作切換頻率為1MHz,輸入電壓為3.3 V,輸出電壓為1.8 V,電感、輸出電容分別為 10 μH、4.7 μF,輸出負載範圍為100 mA至900 mA。

關鍵詞:漣波固定導通時間控制、電壓磁滯控制、雙模式控制、加快暫態響應、降壓型轉換器


In today's technological era, handheld devices like smartphones, tablets, and others have become ubiquitous necessities. Most of these devices rely on batteries as their primary power source. Typically, the internal circuits of such devices require a voltage reduction using buck converters to lower the relatively high battery voltage. This paper proposes a “Dual Mode Control Buck Converter for Improved Load Transient Response.” It employs a dual-mode control formed by Ripple Base Constant On Time Control and Voltage Hysteretic Control. This combination leverages the advantages of voltage hysteretic control to achieve improved transient response. Additionally, it presents a method to mitigate voltage overshoot/undershoot resulting from duty cycle full-on situations. This method utilizes a current sensing circuit to detect inductor current and load current, calculating the time of output voltage drop due to changes in the output load. Based on this time, it adjusts the duty cycle during transients to rapidly restore the output voltage to its steady state. This paper's implementation uses the TSMC 0.18 μm 1P6M CMOS process, with the chip's area comprising Input/Output Pads measuring 1.545 × 1.417 mm². The operational switching frequency is 1MHz, with an input voltage of 3.3 V and an output voltage of 1.8 V. The inductor and output capacitors are 10 μH and 4.7 μF, respectively, and the output load range spans from 100 mA to 900 mA.

Keywords: Ripple Based Constant On Time Control, Voltage Hysteretic Control, Dual Mode Control, Improved Transient Response, Buck Converter

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 2 第二章 直流-直流轉換器之原理與分析 3 2.1直流-直流轉換器簡介 3 2.1.1 線性穩壓器 3 2.1.2 切換式穩壓器 4 2.2切換式降壓型轉換器操作模式分析 5 2.2.1連續導通模式 5 2.2.2不連續導通模式 8 2.2.3邊界導通模式 11 2.2.4強制連續導通模式 12 2.3脈衝寬度調變與脈衝頻率調變分析 14 2.3.1脈衝寬度調變 14 2.3.2脈衝頻率調變 15 2.3.3脈衝寬度調變與脈衝頻率調變分析與比較 15 2.4效率分析 16 2.5暫態響應 16 第三章 漣波控制基礎 18 3.1固定導通時間控制 18 3.1.1固定導通時間控制穩定度分析 20 3.1.2 S-Domain穩定度分析 21 3.1.3 Time-Domain穩定度分析 22 3.2磁滯控制 24 3.3固定導通時間與磁滯控制比較 26 第四章 改善負載暫態響應之雙模式控制 降壓型轉換器 28 4.1轉換器電路簡介 28 4.2轉換器電路動作分析 29 4.3轉換器電路規格與元件設計 32 4.4轉換器電路設計與實現 33 4.4.1整體電路架構 33 4.4.2子電路設計-減法器 34 4.4.3子電路設計-電流感測器 35 4.4.4子電路設計-電壓過衝改善電路 36 4.4.5子電路設計-死區時間與驅動電路 40 第五章 模擬結果 42 5.1轉換器的規格與模擬波形 42 5.2模擬結果比較與暫態響應改善比較圖 45 第六章 量測結果 46 6.1晶片佈局圖 46 6.2晶片腳位配置與定義及PCB佈局 48 6.3晶片量測 51 6.4量測結果 54 第七章 結論與未來展望 56 7.1結論 56 7.2未來展望 56 參考文獻 58

[1] F. Bizzarri, P. Nora and A. Brambilla, "Load Transient Response Analysis of Constant On-Time DC–DC Converters Using a State-Variables Approach," in IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4489-4499, May 2020, doi: 10.1109/TPEL.2019.2941756.
[2] M. Gobbi and A. Mariani, "Low drop-out COT buck converter without maximum duty cycle limitation due to minimum Off-Time," 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 2020, pp. 1-6, doi: 10.23919/AEIT50178.2020.9241198.
[3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer Academic, 2001.
[4] P. Luo, W. Deng, H. Li, S. Zhen, “A high energy efficiency PSM/PWM dual-mode for DC-DC converter in portable applications,” in Proc. IEEE ICCCAS, 2009, pp. 702–706.
[5] Siyuan Zhou, and Gabriel A. Rincon-Mora, “A High Efficiency, Soft Switching DC–DC Converter With Adaptive Current-Ripple Control for Portable Applications, ” IEEE Trans. Circuits Syst. II, vol. 53, pp. 319–323, April 2006.
[6] W. A. Tabisz, P.M. Gradzki, and F.C. Lee, “Zero-voltage-switched quasi-resonant buck and flyback converters-experimental results at 10 MHz,” IEEE Trans. Power Electron. vol. 4, pp. 194–204, April 1989.
[7] V. Vorperian, “Quasisquare wave converters: Topologies and analysis,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 183–191, Apr. 1988.
[8] T. T. Song, N. Huang, A. Ioinovici, “A family of zero-voltage and zero-current-switching (ZVZCS) three-level DC-DC converters with secondary-assisted regenerative passive snubber,” IEEE Trans. Circuits Syst. I, vol. 52, pp. 2473–2481, Nov. 2005.
[9] Cheung Fai Lee and Philip K. T. Mok, , “A Monolithic Current - Mode CMOS DC – DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, January 2004
[10] Yuan Yen Mai and Philip K. T. Mok, “A Constant Frequency Output – Ripple – Voltage –Based Buck Converter Without Using Large ESR Capacitor” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, vol. 55, no. 8, August 2008
[11] K. H. Chen, C. J. Chang, and T. H. Liu, “Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 180–188, Jan. 2008.
[12] M. -L. Chiu, T. -H. Yang and T. -H. Lin, "A High Accuracy Constant-On-Time Buck Converter with Spur-Free On-Time Generator," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-4, doi: 10.1109/ISCAS.2019.8702645.
[13] R. C. -H. Chang, W. -C. Chen and J. K. -S. Huang, "A 93.4% Efficiency 8-mV Offset Voltage Constant On-Time Buck Converter With an Offset Cancellation Technique," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 2069-2073, Oct. 2020, doi: 10.1109/TCSII.2019.2948208.
[14] B. Wang, D. Chen, C. -J. Chen and S. -F. Hsiao, "Stability Prediction of Integrated-Circuit Based Constant ON-Time Controlled Buck Converters," IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6838-6849, June 2021.
[15] W. Yan, W. Li, and R. Liu, “A noise-shaped buck DC–DC converterwithimproved light-load efficiency and fast transient response,” IEEETrans.Power Electron., vol. 26, no. 12, pp. 3908–3924, Dec. 2011.
[16] 王信雄,「開關轉換器–控制理論與設計實務」,立錡科技股份有限公司,2015 年。
[17] 吳義利,「切換式電源轉換器」,2018 年。

無法下載圖示 全文公開日期 2027/01/26 (校內網路)
全文公開日期 2027/01/26 (校外網路)
全文公開日期 2027/01/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE