簡易檢索 / 詳目顯示

研究生: 陳冠良
Kuan-Liang Chen
論文名稱: 以增強式階層樹集合分割演算法為影像竄改偵測及恢復浮水印
Watermarking for Image Tamper Detection and Recovery Using Enhanced SPIHT Algorithm
指導教授: 王乃堅
Nai-Jian Wang
口試委員: 蘇順豐
Shun-Feng Su
呂學坤
Shyue-Kung Lu
陳俊良
Jiann-Liang Chen
郭景明
Jing-Ming Guo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: 影像認證階層樹集合分割演算法
外文關鍵詞: image authentication, Set Partitioning in Hierarchical Trees
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

影像認證(Image Authentication)技術在現今科技發展上對於認證影像的正確性與完整性具有非常重要的地位。影像認證技術是利用嵌入的浮水印來偵測影像是否有遭到竄改,並且將遭竄改的影像恢復。所以可以提供影像一個完整的保護。
本論文是使用階層樹集合分割演算法(Set Partitioning in Hierarchical Trees, SPIHT)來產生浮水印,浮水印數量越多則對於竄改偵測(Tamper Detection)及影像恢復(Image Recovery)的效果越好。但相對的,當浮水印數量越多則嵌入浮水印後的影像品質也會越差。所以本論文的研究方向是在有限制浮水印數量下如何提高竄改偵測及影像恢復的能力。
最後,經實驗證明本論文所提出的方法在嵌入浮水印的影像上能符合浮水印的隱藏性(Imperceptibility)及影像觀賞品質。而在SPIHT解碼後的影像上則PSNR平均可以提升2 ~ 3 dB。而在竄改偵測方法上則能夠準確定位出遭竄改的區塊。


Nowadays, the development of the technology of image authentication has taken an important role to verify the correctness and the integrity of image. Using the embedded watermarking to detect whether the image has been tampered, the technology of image authentication is capable of recovering the tampered image so as to provide the better protection for the image.
The paper refers to using SPIHT (Set Partitioning in Hierarchical Trees) to generate watermarking. The more the watermarking is generated, the better the effect of tamper detection and image recovery will be. However, as the more watermarking is produced, the quality of watermarked image becomes worse. Therefore, this paper aims to enhance the ability of tamper detection and image recovery in the condition of the limited number of watermarking.
Finally, this paper experimentally proves that the watermarked image proposed herein complies with the imperceptibility of watermark and the quality of visual image. The SPIHT decoded image can improve the PSNR performance by 2 ~ 3 dB on average. And, the method of tamper detection can precisely position those tampered blocks.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的與方法 7 1.4 論文架構 9 第二章 相關演算法介紹 10 2.1 SPIHT演算法 10 2.1.1 離散小波轉換 11 2.1.2 SPIHT演算法 13 2.2 基因演算法 21 2.3 變異數 28 2.4 影像評估準則 31 第三章 浮水印產生與嵌入 32 第四章 竄改偵測與影像恢復 39 第五章 實驗結果與分析 42 5.1 SPIHT編碼與解碼實驗 43 5.2 嵌入雙浮水印後的影像品質 44 5.3 大面積影像竄改實驗 44 5.4 小面積影像竄改實驗 48 5.5 胡椒鹽雜訊破壞實驗 51 5.6 與前人方法比較 53 第六章 結論與未來展望 54 參考文獻 56

[01] P. Y. Lin, Y. H. Chen, C. C. Chang and J. S. Lee, “Contrast-adaptive removable visible watermarking mechanism,” Journal of Image and Vision Computing, vol. 31, no. 4, pp. 311-321, Apr. 2013.
[02] Q. Su, Y. Niu, X. Liu and T. Yao, “A novel blind digital watermarking algorithm for embedding color image into color image,” Journal of Optik, vol. 124, no. 18, pp. 3254-3259, Sep. 2013.
[03] H. M. Tsai and L. W. Chang, “Secure reversible visible image watermarking with authentication,” Journal of Signal Processing, vol. 25, no. 1, pp. 10-17, Jan. 2010.
[04] Y. Fu, “Robust oblivious image watermarking scheme based on coefficient relation,” Journal of Optik, vol. 124, no. 6, pp. 517-521, Mar. 2013.
[05] C. Song, S. Sudirman and M. Merabti, “A robust region-adaptive dual image watermarking technique,” Journal of Visual Communication and Image Representation, vol. 23, no. 3, pp. 549-568, Apr. 2012.
[06] Q. Gu and T. Gao, “A novel reversible robust watermarking algorithm based on chaotic system,” Journal of Digital Signal Processing, vol. 23, no. 1, pp. 213-217, Jan. 2013.
[07] C. H. Chen, Y. L. Tang, C. P. Wang and W. S. Hsieh, “A robust watermarking algorithm based on salient image features,” Journal of Optik, vol. 125, no. 3, pp. 1134-1140, Feb. 2014.
[08] B. S. Sergio and K. N. Asoke, “Secure fragile watermarking method for image authentication with improved tampering localisation and self-recovery capabilities,” Journal of Signal Processing, vol. 91, no. 4, pp. 728-739, Apr. 2011.
[09] S. Rawat and B. Raman, “A chaotic system based fragile watermarking scheme for image tamper detection,” International Journal of Electronics and Communications, vol. 65, no. 10, pp. 840-847, Oct. 2011.
[10] Y. Huo, H. He and F. Chen, “Alterable-capacity fragile watermarking scheme with restoration capability,” Journal of Optics Communications, vol. 285, no. 7, pp. 1759-1766, Apr. 2012.
[11] M. Botta, D. Cavagnino and V. Pomponiu, “A successful attack and revision of a chaotic system based fragile watermarking scheme for image tamper detection,” International Journal of Electronics and Communications, vol. 69, no. 1, pp. 242-245, Jan. 2015.
[12] W. Zhang and F. Y. Shih, “Semi-fragile spatial watermarking based on local binary pattern operators,” Journal of Optics Communications, vol. 284, no. 16, pp. 3904-3912, Aug. 2011.
[13] R. O. Preda, “Semi-fragile watermarking for image authentication with sensitive tamper localization in the wavelet domain,” Journal of Measurement, vol. 46, no. 1, pp. 367-373, Jan. 2013.
[14] H. M. AI-Otum, “Semi-fragile watermarking for grayscale image authentication and tamper detection based on an adjusted expanded-bit multiscale quantization-based technique,” Journal of Visual Communication and Image Representation, vol. 25, no. 5, pp. 1064-1081, Jul. 2014.
[15] Y. Li, and L. Du, “Semi-fragile watermarking for image tamper localization and self-recovery,” 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics, pp. 328-333, Oct. 2014.
[16] R. Chamlawi, A. Khan and I. Usman, “Authentication and recovery of images using multiple watermarks,” Journal of Computers and Electrical Engineering, vol. 36, no. 3, pp. 578-584, May 2010.
[17] C. C. Lo and Y. C. Hu, “A novel reversible image authentication scheme for digital images,” Journal of Signal Processing, vol. 98, pp. 174-185, May 2014.
[18] P. L. Lin, C. K. Hsieh and P. W. Huang, “A hierarchical digital watermarking method for image tamper detection and recovery,” Journal of Pattern Recognition, vol. 38, no. 12, pp. 2519-2529, Dec. 2005.
[19] M. S. Wang and W. C. Chen, “A majority-voting based watermarking scheme for color image tamper detection and recovery,” Journal of Computer Standards and Interfaces, vol. 29, no. 5, pp. 561-570, Jul. 2007.
[20] T. Y. Lee and S. D. Lin, “Dual watermark for image tamper detection and recovery,” Journal of Pattern Recognition, vol. 41, no. 11, pp. 3497-3506, Nov. 2008.
[21] Q. Song and H. Zhang, “Image tamper detection and recovery using dual watermark,” 2010 IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing, pp. 1-4, Sep. 2010.
[22] J. Zhang, Q. Zhang and H. Lv, “A novel image tamper localization and recovery algorithm based on watermarking technology,” Journal of Optik, vol. 124, no. 23, pp. 6367-6371, Dec. 2013.
[23] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12 pp. 3445-3462, Dec. 1993.
[24] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243-250, Jun. 1996.
[25] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, vol. 3, pp. 344-348, Oct. 1999.
[26] H. Guan, Z. Zeng, J. Liu and S. Zhang, “A novel robust digital image watermarking algorithm based on two-level DCT,” 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 3, pp. 1804-1809, Apr. 2014.
[27] K. K. Rao and C. S. Rao, “Block based robust blind image watermarking using discrete wavelet transform,” 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, pp. 58-61, Mar. 2014.
[28] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
[29] 潘正祥,張真誠,林詠章,挑戰影像處理:數位浮水印技術,美商麥格羅•希爾,台北,2007。
[30] 吳上立,林明德編譯,C語言數位影像處理,全華圖書有限公司,台北,2009。
[31] 求是科技,Visual C++數位影像處理技術大全,文魁資訊有限公司,台北,2008。

QR CODE