簡易檢索 / 詳目顯示

研究生: 王李吉
Lee-Jyi Wang
論文名稱: 應用於SPIHT影像傳輸之非均等錯誤保護之快速漸進式重複傳送分配法
Fast Progressive Diversity Allocation for Unequal Erasure Protection of Transmission of SPIHT-Encoded Images
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 廖弘源
none
李大嵩
none
方文賢
none
曾德峰
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 影像傳輸離散小波轉換SPIHT可移除通道非均等錯誤保護漸進式重複分配
外文關鍵詞: image transmission, embedded zero tree (EZT), discrete wavelet transform (DWT), set partitioning in hierarchical trees (SPIHT), unequal error protection (UEP), progressive diversity allocation (PDA)
相關次數: 點閱:345下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SPIHT 是一個結合離散小波轉換的高效率影像壓縮技術,而經小波轉換後的影像具有將能量往前(低頻) 集中的效果,且由於此影像壓縮技術可以選擇在任一位元處終止,所以SPIHT 適用於漸進傳輸。儘管SPIHT 有著極佳的壓縮表現,但仍存在一個重要的問題:就是在解碼時對資料序列中任一位元的錯誤有著極為敏感的特性,使得有可能導致解出與原影像毫無關聯、令人無法理解的結果。因此,引發我們想要去解決:如何在具有雜訊且確定會產生錯誤的通道中,傳輸經SPIHT 壓縮的影像,並能夠在接收端盡可能地重建這種對位元錯誤極其敏感的壓縮影像。為便於進一步的討論,我們將場景設定成傳送端單向傳送資料,而且不會收到來自接收端的任何回應。而在我們提出的解決方法中,首先會將經SPIHT 壓縮過的影像資料,分成長度相同的兩類資料封包,其中一類稱為CP,另一類叫做RP。為了使其具備錯誤控制能力,會在每個資料封包加入CRC,讓接收端能夠透過當下取得封包的校驗和(check sum),來判定是否已正確地完成接收,且只有被正確接收的才採用。而具有上述性質的雜訊通道,我們將其稱做接收可移除通道(erasure channel)。為了進行非均等錯誤保護,因此封包會因為其重要性較高而給予較多次的重複傳送,這稱為重送分配(DA)。同時我們也引用魚骨圖來簡化對傳送方法的理解與分析及加速計算,並能在封包傳送前做適當的效能估測。在論文中我們提出了兩種重送分配方法,第一種是透過窮舉所有合理組合的方式,並在過程中透過計算出各個組合所對應的期待SNR 值,找出近乎最佳的分配結果。不過這個方法需要耗費非常大的計算成本。第二種是漸進式重複分配(PDA),事實上此方法本身就具有漸進的風格與策略,其計算的複雜度與成本均大幅地降低。此外,後者所獲致的解碼影像也有著相當好的效果。實驗結果顯示我們提出的方法,有效地增進接收影像解碼後的效果。同時透過把將要傳送的資料分成CP 與RP 後,可以讓我們在傳送端進行更聰明地的重送分配,也因此能夠使接收端獲得更高品質的解碼影像。


    Based on the embedded zero tree (EZT) coding with discrete wavelet transform (DWT), SPIHT (set partitioning in hierarchical trees) is a highly efficient image compression technique that can be stopped at any bit, and thus allows for progressive transmission. However, one problem exist- ing in SPIHT is that its decoding could be extremely sensitive to bit errors in the code sequence. In this dissertation, we address the issue of trans- mitting SPIHT-encoded images via noisy channels, wherein errors are inevitable. The communication scenario assumed in this dissertation is that the transmitter cannot get any acknowledgement from the receiver. In our scheme, the original SPIHT code sequence is first segmented into packets. Each packet is classified as either a CP (critical packet) or an RP (refinement packet). For error control, cyclic redundancy check (CRC) is incorporated into each packet. By checking the CRC check sum, the receiver is able to tell whether a packet is correctly received or not. In this way, the noisy channel can be effectively modeled as an erasure channel. For unequal error protection (UEP), each of those packets is repeatedly transmitted for a few times, as determined by a process called diversity allocation (DA). For simplifying the analysis of our scheme, a fish-bone diagram is introduced to help formulation and estimation be- fore transmission. Two DA algorithms are proposed. The first algorithm produces a nearly optimal decoded image (as measured in the expected signal-to-noise ratio). However, its computation cost is extremely high. The second algorithm works in a progressive fashion, called progressive diversity allocation (PDA), and is naturally compatible with progressive transmission. Its computation complexity is extremely low. Nonetheless, its decoded image is nearly as good. Experimental results show that the proposed scheme significantly improves the decoded images. They also show that making distinction between CP and RP results in wiser diversity allocation to packets and thus produces higher quality in the decoded images.

    1 Introduction 1 1.1 Review of Some Related Work . . . . . . . . . . . . . . 2 1.2 Contributions of the Dissertation . . . . . . . . . . . . . 4 1.3 Organization of the Dissertation . . . . . . . . . . . . . 5 2 Review of Theories and Techniques 6 2.1 Series Expansion . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Multiresolution Analysis . . . . . . . . . . . . . 6 2.2 Discrete Wavelet Transform . . . . . . . . . . . . . . . 11 2.2.1 Wavelet Series Expansion . . . . . . . . . . . . 12 2.2.2 Discrete Wavelet Transform . . . . . . . . . . . 12 2.2.3 2-D Discrete Wavelet Transform . . . . . . . . . 15 2.3 The SPIHT Algorithm . . . . . . . . . . . . . . . . . . 17 2.3.1 The SPIHT Encoding . . . . . . . . . . . . . . . 19 2.3.2 The SPIHT Decoding . . . . . . . . . . . . . . . 27 2.4 Set Partitioning Embedded Block Coder . . . . . . . . . 27 2.4.1 The SPECK Encoding and Decoding . . . . . . 30 2.4.2 SPIHT versus SPECK . . . . . . . . . . . . . . 34 2.5 Transmission of SPIHT Encoded Bit Streams . . . . . . 34 2.6 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Proposed Scheme for Transmission of SPIHT-Encoded Im- ages 3 3.1 Progressive Decoding of SPIHT Code Sequences . . . . 38 3.2 System Architecture . . . . . . . . . . . . . . . . . . . . 41 3.3 Computation of RSSE Reward in Error-Free SPIHT De- coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 RSSE derivation . . . . . . . . . . . . . . . . . 43 3.3.2 The Implementation of RSSE Computation . . . 45 3.4 Conversion of Performance Indices . . . . . . . . . . . . 47 3.5 Packetization of the SPIHT Code Bits . . . . . . . . . . 48 3.6 Problem Formulation . . . . . . . . . . . . . . . . . . . 49 3.7 Computation of Expected SNR in Noisy Decoding . . . 51 4 Diversity Allocation Algorithms 55 4.1 Eligible Allocations for CPs and RPs . . . . . . . . . . . 55 4.2 Allocation by Search over Reasonably Good Combina- tions (SoRGC) . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Progressive Diversity Allocation . . . . . . . . . . . . . 60 4.4 Computation Complexity of Full Search and PDA . . . . 62 5 Experimental Results and Discussion 65 5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . 65 5.2 Diversity Numbers Allocated to Packets . . . . . . . . . 66 5.3 Effect of Budget on Performance . . . . . . . . . . . . . 68 5.4 Effect of PER on Performance . . . . . . . . . . . . . . 69 5.5 Performance of PDA as Compared to SoRGC . . . . . . 71 6 Conclusions 73 6.1 Summary of the Dissertation . . . . . . . . . . . . . . . 73 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 74 APPENDIX 79 A Proof of Eq. 4.3 79 B Derivation of an upper bound on the Computation Complexity of the PDA 81 C SPIHT detailed output for an 8x8 DWT case 85

    [1] S. G. Mallat, ''A theory for multiresolution signal decomposition:
    the wavelet representation,'' IEEE Trans. on Pattern Analysis and
    Machine Intelligence, Vol. 11, Issue 7, pp. 674-693, July 1989.

    [2] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley- Cambridge Press, 1996.

    [3] J. Shapiro, ''Embedded image coding using zerotrees of wavelet coefficients,'' IEEE Trans. on
    Signal Processing, Vol. 41, No. 12, pp. 3445-3462, Dec. 1993.

    [4] A. Said and W. A. Pearlman, ''A new, fast and efficient image codec based on set partitioning
    in hierarchical trees,'' IEEE Trans. on Cir- cuits and Systems for Video Technology, Vol. 6, pp.
    243-250, June 1996.

    [5] P. C. Cosman, J. K. Rogers, P. G. Sherwood, and K. Zeger, ''Im- age transmission over channels
    with bit errors and packet erasures,'' Conference Record of the Thirty-Second Asilomar Conference
    on Signals, Systems & Computers, Vol. 2, pp. 1621-1625, Nov. 1998.

    [6] P. C. Cosman, J. K. Rogers, P. G. Sherwood, and K. Zeger, ''Com- bined forward error control
    and packetized zerotree wavelet encod- ing for transmission of images over varying channels,'' IEEE
    Trans- actions on Image Processing,, Vol. 9, No. 6, pp. 982-993, Jun. 2000.

    [7] L. C. Ramac and P. K. Varshney, ''A wavelet domain diversity method for transmission
    of images over wireless channels,'' IEEE Journal on Selected Areas In Communication, Vol.
    18, No. 6, pp. 891-898, June 2000.

    [8] Y. Sriraja and T. Karp, ''Error Protection of Packetized SPIHT Bit Streams for Image
    Transmission Over Noisy Channels,'' Signals, Systems and Computers, 2005. Conference Record of the
    Thirty- Ninth Asilomar, pp. 864-868, 2005.

    [9] M. A. Khan and E. Khan, ''Error resilient technique for SPIHT coded color images,'' Multimedia,
    Signal Processing and Communication Technologies, IMPACT '09. International, pp. 237-240, 2009.

    [10] J. Kim, R. M. Mersereau, and Y. Altunbasak, ''Error-resilient image and video transmission
    over the Internet using unequal error protec- tion,'' IEEE Trans. on Image Processing, Vol. 12, No.
    2, pp. 121-131, Feb. 2003.

    [11] A. A. Alatan, M. Zhao, and A. N. Akansu, ''Unequal error protec- tion of SPIHT encoded image
    bit streams,'' IEEE Journal on Selected Areas In Communication, Vol. 18, No. 6, pp. 814-818, June
    2003.

    [12] V. Chande and N. Farvardin, ''Progressive transmission of images over memoryless noisy
    channels,'' IEEE Journal on Selected Areas In Communication, Vol. 18, No. 6, pp. 850-860, 2000.

    [13] N. Thomos, N. V. Boulgouris, and M. G. Strintzis, ''Wireless im- age transmission using turbo
    codes and optimal unequal error protec- tion,'' IEEE Trans. on Image Processing, Vol. 14, No. 11,
    pp. 1890-1901, Nov. 2005.

    [14] S. Dumitrescu, G. Rivers, and S. Shirani, ''Unequal Erasure Protec- tion Technique for
    Scalable Multistreams,'' IEEE Trans. on Image Processing, Vol. 19, No. 2, pp. 422-434, Feb. 2010.

    [15] K. T. Lay, C. Y. Chou, and L. J. Wang, ''Unequally protected packet transmission of
    SPIHT-Compressed Images,'' IPOE2012, SPIE Proc., Vol. 8335, pp. 833515-1-833515-7, 2012.

    [16] K. T. Lay and L. J. Wang, ''Progressive diversity allocation for progressive transmission of
    SPIHT packets in erasure channels,'' ICGIP2012, SPIE Proc., Vol. 8768, pp. 87687G-1-87687G-7, 2012.

    [17] K. T. Lay and L. J. Wang, ''Packetization and Unequal Erasure Protection for Transmission of
    SPIHT-Encoded Images with Pro- gressive Diversity Allocation,'' IEICE Trans. on Communications,
    Vol. E97-B, No. 1, pp. 226-237, Jan. 2014.

    [18] Rehna V. J and Jeya Kumar M. K, ''Wavelet Based Image Coding Schemes: A Recent Survey,''
    International Journal on Soft Comput- ing (IJSC), Vol. 3, No. 3, Aug. 2012.

    [19] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, ''Efficient, Low- Complexity Image Coding
    with a Set-Partitioning Embedded Block Coder,'' IEEE Trans. on Circuits and Systems for Video
    Technology, Vol. 14, No. 11, pp. 1219-1235, Nov. 2004.

    [20] R. C. Gonzalez and R. E. Woods, Digital Image Processing second edition, Prentice Hall, 2002.

    [21] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, ''Image coding using wavelet
    transform,'' IEEE Trans. on Image Processing, Vol. 1, No. 2, pp. 205-220, April 1992.

    [22] I. Daubechies, ''Orthonormal bases of compactly supported wavelets,''
    Communications on Pure and Applied Mathematics, Vol. 41, pp. 909-996, 1988.

    [23] R. M. Rao and A. S. Bopardikar, Wavelet Transforms, Mas- sachusetts: Addison Wesley Longman,
    1998.

    [24] H. Man, F. Kossentini, and M. J. T. Smith,''A family of efficient and channel error resilient
    wavelet/ subband image coder,'' IEEE Trans. Circuit & Systems for Video Technology, Vol. 9, pp.
    95-108, Feb. 1999.

    [25] L. Yao and L. S. Cao, ''Turbo Codes based Image Transmission for Channels with both Random
    Errors and Packet Loss,'' IEEE Interna- tional Conference on Commun., pp. 1784-1789, 24-28 June
    2007.

    [26] A. Mohr, E. Riskin, and R. Ladner, ''Unequal loss protection: Graceful degradation of image
    quality over packet erasure channels through forward error correction,'' IEEE Journal on Selected
    Areas of Communications, Vol. 18, 2000.

    [27] Q. Li and X. Zhang, ''Robust SPIHT-Coded Image Transmission over Wireless Channels Using
    Packetization,'' IEEE Image and Sig- nal Processing, International Congress, pp. 1-4, 17-19 Oct.
    2009.

    [28] C. L. Tung, T. S. Chen, W. H. Wang, and S. T. Yeh, ''A New Improvement of SPIHT Progressive
    Image Transmission,'' IEEE Fifth International Symposium on Multimedia Software Engineer- ing,
    pp. 180-187, 10-12 Dec. 2003.

    [29] A. Nosratinia, J. Lu, and B. Aazhang, ''Source-Channel Rate Allo- cation for Progressive
    Transmission of Images,'' IEEE Trans. Com-
    mun., Vol. 51, No. 2, pp. 186-196, 1996.

    QR CODE