簡易檢索 / 詳目顯示

研究生: 康銘洋
Ming-Yang Kang
論文名稱: SPIHT影像封包結合可選擇性里德索羅門碼之漸進式不等錯誤保護傳輸技術
Progressive Unequal Error Protection for SPIHT Image Packets Combined with Reed-Solomon Code Selection
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 方文賢
none
郭景明
Jing-Ming Guo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 51
中文關鍵詞: 離散小波轉換影像傳輸SPIHT不等錯誤保護里德-所羅門碼無線通道多樣性級數
外文關鍵詞: diversity order
相關次數: 點閱:228下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多媒體技術的迅速發展,使用者對多媒體的需求量大增,其中又以影像傳輸所需的資料量最大,故在有限的記憶體儲存容量中,有效的壓縮及傳輸方法是迫切需要的。
    其中離散小波轉換技術之特點非常適合使用於影像壓縮,而基於離散小波轉換技術下所發展的SPIHT壓縮方法亦有許多優點,不僅能在無雜訊干擾的情況下壓縮出高品質的影像,
    且編解碼效率高,亦能提供漸進式傳輸。不過SPIHT壓縮在影像傳輸上卻有一致命缺點,即是其編碼後的位元序列對雜訊極為敏感,即使只是一個位元的錯誤也有可能造成不可補救的錯誤。

    在本論文中,我們研究了SPIHT編碼的位元序列特性,並依其特性將此缺點進一步改善,使其在通道中能有效對抗雜訊且順利被傳送至接收端。我們假設通訊場景為無回傳機制,
    因此在錯誤保護機制中我們亦同時使用了里德-所羅門碼。在所提出的傳輸機制中,經由我們所提出的最佳打包機制將訊息打包成各種具有不同更正參數且封包長度都固定的封包,
    並利用SPIHT的編解碼特性使用漸進式多樣性分配給予封包不同重要性的分配,達到不等錯誤保護,使能保證接收端受到最佳品質的影像。我們以模擬來驗證此系統的效能,
    並與其他兩種機制作為比較,其中一種亦為封包附有可選擇性里德-所羅門碼,而另一種則為不可選擇性里德-所羅門碼。實驗結果證實在通道訊雜比很低時,我們所提出的機制明顯優於以往的打包方式。


    As a result of the rapid development of multimedia technologies, effective compression and transmission methods under limited resources (storage and bandwidth)
    are needed. The characteristics of the wavelet transforms make it suitable for image compression. Coupled with the discrete wavelet transform (DWT),
    set partitioning in hierarchical trees (SPIHT) is a highly efficient image compression technique that allows for progressive transmission.
    One issue with SPIHT, however, is that its decoding can be extremely sensitive to errors in the embedded bit stream generated by the encoder.

    In this thesis, we address the issue of transmitting SPIHT-encoded images via noisy channels, wherein errors are inevitably
    encountered. The communication scenario assumed in this thesis is that no acknowledge path is available from the receiver to
    the transmitter. Therefore, the error protection is done in the forward fashion (i.e. by forward error correction). More
    specifically speaking, the error protection is implemented with the combination of Reed-Solomon codes and the technique of diversity.

    In the proposed scheme, the SPIHT data sequence is divided into packets (referred to as source packets). In the mean time,
    we have a code selection mechanism to select, among four different code rates, a Reed-Solomon code for each source packet.
    The resulted packet is called a channel packet. To fight the Rayleigh fading encountered in the channel, each channel packet
    is repeatedly transmitted for a "diversity-order" of times. The combination of diversity and Reed-Solomon codes provide unequal
    error protection (UEP) to the source packets. The determination of the diversity order for each packet is the main task of this work.
    We propose a scheme called "progressive diversity allocation" (PDA) to do this. Its computation complexity is very low, and it produces very good decoded image quality.
    Moreover, it is observed that the incorporation of several code rates, instead of just a fixed code rate, improves the decoded images, especially when the channel signal-to-noise ratio (SNR) is low.

    第一章 緒論 1 1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 內容章節概述 . . . . . . . . . . . . . . . . . . . . . . 2 第二章 相關背景回顧 3 2.1 離散小波轉換 . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 小波級數的展開 . . . . . . . . . . . . . . . . . 4 2.1.2 一維離散小波轉換 . . . . . . . . . . . . . . . . 4 2.1.3 二維離散小波轉換 . . . . . . . . . . . . . . . . 6 2.2 SPIHT 演算法 . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 系統架構圖 . . . . . . . . . . . . . . . . . . . . 9 2.2.2 排序演算法 . . . . . . . . . . . . . . . . . . . . 10 2.2.3 空間方向樹 . . . . . . . . . . . . . . . . . . . . 10 iv 2.2.4 編碼演算法 . . . . . . . . . . . . . . . . . . . . 12 2.2.5 SPIHT 解碼 . . . . . . . . . . . . . . . . . . . 13 2.3 通道編碼 . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 BCH碼 . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 里德-所羅門碼 (Reed-solomon code) . . . . . . 17 2.4 SPIHT位元流的傳輸 . . . . . . . . . . . . . . . . . . . 17 2.5 漸進式傳輸 . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 無線通道特性 . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 可加性白高斯雜訊 . . . . . . . . . . . . . . . . 20 2.6.2 雷利衰減分佈 . . . . . . . . . . . . . . . . . . 21 2.7 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第三章 附有可選擇性更正參數的封包及漸進式多樣性分配傳輸 24 3.1 系統結構 . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 在無錯誤的情況下誤差平方減少量的計算 . . . . . . . . 25 3.2.1 誤差平方減少量的推導 . . . . . . . . . . . . . . 25 3.2.2 效能指標轉換 . . . . . . . . . . . . . . . . . . 27 3.3 訊息封包 . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 封包類型 . . . . . . . . . . . . . . . . . . . . . 29 v 3.3.2 附有里德-所羅門碼的封包 . . . . . . . . . . . . 29 3.3.3 訊息打包機制 . . . . . . . . . . . . . . . . . . 31 3.4 最佳多樣性分配 . . . . . . . . . . . . . . . . . . . . . 33 3.5 預期的影像訊雜比 . . . . . . . . . . . . . . . . . . . . 35 3.6 多樣性分配 . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6.1 迭代式多樣性分配 . . . . . . . . . . . . . . . . 37 3.6.2 漸進式多樣性分配 . . . . . . . . . . . . . . . . 38 3.7 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 第四章 實驗結果 40 4.1 不相等錯誤保護 . . . . . . . . . . . . . . . . . . . . . 41 4.2 附有可選擇性里德-所羅門碼的封包 . . . . . . . . . . . 43 4.3 系統效能比較 . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 實驗一 . . . . . . . . . . . . . . . . . . . . . . 44 4.3.2 實驗二 . . . . . . . . . . . . . . . . . . . . . . 45 4.4 總通道封包對系統效能的影響 . . . . . . . . . . . . . . 46 第五章 結論與未來展望 48 參考文獻 50

    [1] J. Shapiro, ”Embedded Image Coding using Zerotrees of Wavelet Coeffi-
    cients,” IEEE Trans. on Signal Processing, vol. 41, no. 12, pp. 3445-3462,
    Dec. 1993.
    [2] A. Said and W. A. Pearlman, ”A New, Fast and Efficient Image Code based on
    Set Partitioning In Hierarchical Trees,” IEEE Trans. on Circuits and Systems
    for Video Technology, vol. 6, pp. 243-250, June 1996.
    [3] L. C. Ramac and P. K. Varshney, ”A Wavelet Domain Diversity Method for
    Transmission of Images over Wireless Channels,” IEEE Journal on Slected
    Areas In Communication, vol. 18, no. 6, pp. 891-898, June 2000.
    [4] Y. Sriraja and T. Karp, ”Error Protection of Packetized SPIHT Bit Streams
    for Image Transmission Over Noisy Channels,” Signals, Systems and Com-
    puters, 2005. Conference Record of the Thirty-Ninth Asilomar, pp. 864-868,
    2005.
    [5] M. A. Khan and E. Khan, ”Error Resilient Technique for SPIHT Coded Color
    Images,” Multimedia, Signal Processing and Communication Technologies,
    IMPACT ’09. International, pp. 237-240, 2009.
    [6] J. Kim, R. M. Mersereau, and Y. Altunbasak, ”Error-Resilient Image and
    Video Transmission over the Internet using Unequal Error Protection,” IEEE
    Trans. on Image Processing, vol. 12, no. 2, pp. 121-131, Feb. 2003.
    [7] R. Bose, Information Theory, Coding and Cryptography, McGraw-Hill, 2002.
    [8] Shu Lin, Daniel J. Costello,Error Control Coding, 2nded. Prentice-Hall, 2004.
    [9] A. A. Alatan, M. Zhao, and A. N. Akansu, ”Unequal Error Protection of
    SPIHT Encoded Image Bit Streams,” IEEE Journal on Slected Areas In Com-
    munication, vol. 18, no. 6, pp. 814-818, June 2003.
    [10] A. Bouridane, F. Khelifi, A. Amira, F. Kurugollu and S. Boussakta, ”A Vary
    Low Bit-Rate Embedded Color Image Coding with SPIHT, ” in Proc. IEEE
    Int. Conf. Acoustic, Speech and Signal Processing, vol. 4, pp. 689-92, Apr.
    2004.
    50
    [11] N. Thomos, N. V. Boulgouris, and M. G. Strintzis, ”Wireless Image Trans-
    mission using Turbo Codes and Optimal Unequal Error Protection,” IEEE
    Trans. on Image Processing, vol. 14, no. 11, pp. 1890-1901, Nov. 2005.
    [12] R. C. Gonzolez, R. E. Woods, Digital Image Processing second edition, Pren-
    tice Hall, 2002.
    [13] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, ”Image Coding
    using Wavelet Transform,” IEEE Trans. on Image Processing, vol. 1, no. 2,
    pp. 205-220, April 1992.
    [14] I. Daubechies, ”Orthonormal Bases of Compactly Supported Wavelets,” Com-
    munications on Pure and Applied Mathematics, vol. 41, pp. 909-996,1988.
    [15] R. M. Rao, A. S. Bopardikar, Wavelet Transforms, Massachusetts: Addison
    Wesley Longman, 1998.
    [16] H. Man, F. Kossentini and M. J. T. Smith,”A Family of Efficient and Chan-
    nel Error Resilient Wavelet/Subband Image Coder,” IEEE Trans. Circuit &
    Systems for Video Technology, vol. 9, pp. 95-108, Feb.1999.
    [17] L. Yao, L. S. Cao, ”Turbo Codes based Image Transmission for Channels
    with both Random Errors and Packet Loss,” IEEE International Conference
    on Commun. , pp.1784-1789, 24-28 June 2007.
    [18] Q. Li, X. Zhang, ”Robust SPIHT-Coded Image Transmission over Wireless
    Channels Using Packetization,” IEEE Image and Signal Processing, Interna-
    tional Congress , pp.1-4, 17-19 Oct. 2009.
    [19] C. L. Tung, T. S. Chen, W. -H. Wang, S. T. Yeh, ”A New Improvement of
    SPIHT Progressive Image Transmission,” IEEE Fifth International Sympo-
    sium on Multimedia Software Engineering, pp. 180- 187, 10-12 Dec. 2003.
    [20] A. Nosratinia, J. Lu,B. Aazhang, ”Source-Channel Rate Allocation for Pro-
    gressive Transmission of Images,” IEEE Trans. Commun., vol. 51, no. 2,
    pp. 186-196, 1996.
    [21] V. Chande and N. Farvardin, ”Progressive transmission of images over mem-
    oryless noisy channels,” IEEE Journal on Slected Areas In Communication,
    vol. 18, no. 6, pp. 850-860, 2000.
    [22] 周佳怡, ”用於 SPIHT 影像封包之不等錯誤保護傳輸技術,” 國立台灣科技大學電
    子工程研究所, 2011.
    [23] K. T. Lay, C. Y. Chou and L. J. Wang, ”Unequally Protected Packet Trans-
    mission of SPIHT-Compressed Images,” International Workshop on Image
    Processing and Optical Engineering, Proc. SPIE Vol. 8335 833515-1, 2012.

    QR CODE