簡易檢索 / 詳目顯示

研究生: 彭冠銘
GUAN-MING PENG
論文名稱: 空氣濾清器的性能與噪音特性之數值模擬分析
Numerical Analysis on Aerodynamic and Acoustic Characteristics of the Air Cleaner
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 林顯群
Sheam-Chyun Lin
楊旭光
Shiuh-Kuang Yang
陳呈芳
Cheng Fang Chen
郭振華
Jhen Hua Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 252
中文關鍵詞: 亥姆霍茲共振器前傾式離心扇空氣濾清器氣動力性能特徵頻率噪音數值模擬
外文關鍵詞: Helmholtz Resonator, forward curved centrifugal, Air Cleaner, Aerodynamic Performance, Acoustic Characteristics, Numerical Simulation
相關次數: 點閱:555下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技進步與技術的蓬勃發展,人們對生活品質的要求也逐漸提升,空氣濾清器已是家庭中不可或缺的電器產品;且因為工業過度發展,空氣品質逐漸惡劣,許多家庭中小孩的過敏也開始產生,因此空氣濾清器的效能也開始受到重視。空氣濾清器發展至今,在要求效能的同時,也因此衍生了惱人之氣動噪音。為了抑制此氣動噪音,本研究選用亥姆霍茲共振器來進行離心扇之窄頻帶噪音的降噪,利用不同設計參數分析探討相對應之效果。首先利用CFD模擬軟體進行整機的優化設計,藉由更動整體外形、葉片出入口角、葉片數及電漿片擺放位置,完成優化設計並將之作為基準;接著經由計算結果探討流場與噪音之連動關係,試圖找出風扇的最大噪音源,且將共振器裝於最大噪音源進行降噪。隨後針對此具有共振器之風扇進行流場與噪音的數值模擬,以確認共振器應用於風扇的降噪效果;由模擬結果得知,共振器對風扇之氣動性能影響不大,而對於降噪效果最高可到3dBA;綜合歸納上述結論,本文所探討的亥姆霍茲共振器應用於離心扇確實有效果,但對特徵頻的降噪效果還需經過不同設計參數和安裝位置作更多探討,才能確保減噪效果之實用性。


Recently, the air-quality control attracts many research interests and is treated as the evaluation index for meeting strict environmental requirements in human life. Also, WHO's air pollution report points out that the particulate matter concentration surpasses the standard frequently and air pollution spreading throughout the world are leading people to pay attention on air cleaners, masks, and other air-filter products. So, the high-performance air cleaner has become an essential appliance in every family. However, the performance characteristics of air cleaner are rarely investigated in a systematical manner. Therefore, this research intends to investigate the physical mechanism of flow pattern, enhance the aerodynamic performance, and reduce the acoustic noise with the aids of numerical technology. Firstly, a commercial air cleaner is chosen to calculate numerically its aerodynamic performances for serving as the comparing base. The results show that reference product generates 610 CFM of maximum flow rate and 31.2 mmAq of maximum static pressure at 1,250 rpm. In addition, this calculated flow information is utilized to raise new design alternatives for finding out the optimum combination of housing, inlet guiding duct, blade angle, blade number, central body and geometry of rotor, cut-off clearance, outlet adaptor, and filter arrangement, which are modified methodically with the aids of parametric study on each component considered here. Consequently, these appropriate components are employed to construct the new air cleaner, which is estimated numerically to produce the free-delivery flowrate at 735 CFM and the no-delivery pressure at 30.8 mmAq. These performance outcomes represent a 20.5% increase on maximum flowrate with a similar static pressure. Note that it is found that the flow rate delivered by unit torque is improved substantially by 24.8%, which increases from the original 480 CFM/N-m to 599 CFM/N-m. Besides, the velocity pattern at the discharge becomes more uniformly distributed for the new air cleaner.
Thereafter, the Helmholtz resonator is designed and imposed to this air cleaner for reducing it annoying harmonic noise. Subsequently, the acoustic field of new air cleaner is calculated and analyzed carefully via the transient CFD simulation. So, an in-depth understanding on the acoustic features is attained and utilized to design several Helmholtz resonators targeting the 1st and the 2nd harmonics, which are installed at the cut-off (noise source) and the highest-pressure fluctuating location on the housing as illustrated in the numerical outcomes. According to the CFD simulation, the maximum noise reductions is observed as high as 3.9 dB on the 1st harmonic frequency when 7 Helmholtz resonators are installed in parallel to the air stream on the housing. Clearly, the noise-reduction effect needs to be further optimized by executing a comprehensive parametric study on resonator geometry. In conclusion, this study establishes a systematic and reliable scheme for performance enhancement and acoustic analysis of the air cleaner within the framework of CFD technology.

摘要 I Abstract III 致謝 VII 目錄 IX 圖索引 XIII 表索引 XVII 符號索引 XIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 離心扇設計及性能改良 4 1.2.2 風機噪音理論及共振器 10 1.2.3 共振器理論 12 1.2.4 數值模擬 17 1.3 研究動機與方法 23 第二章 風扇簡介 29 2.1 離心扇介紹 32 2.2 能量方程式 34 2.3 離心扇設計 37 2.3.1 葉輪尺寸 38 2.3.2 葉片角度設計 40 2.3.3 外殼設計 42 2.4 風機噪音及亥姆霍茲共振器 46 2.4.1 風扇噪音 47 2.4.2 亥姆霍茲共振器設計 52 第三章 數值模擬 61 3.1 統御方程式及紊流模組 61 3.1.1 統御方程式 62 3.1.2 紊流模式理論 64 3.1.3 大尺度渦漩計算法 66 3.2 數值計算理論 69 3.2.1 求解流程 70 3.2.2 離散化方程式 71 3.2.3 上風差分法 73 3.2.4 速度與壓力耦合 75 3.3 聲學模式理論 78 第四章 原始空氣濾清器之模擬分析 82 4.1 模型建立 82 4.2 網格規劃 87 4.3 邊界條件與收斂判定原則 101 4.4 原始空氣濾清器之流場分析 104 第五章 離心式風機之流道與葉輪設計 119 5.1 風扇外殼尺寸 119 5.1.1 外殼螺旋線之定義 119 5.1.2 螺旋線外殼之流場分析 120 5.2 縮小葉輪之外殼與中心體設計 129 5.2.1 葉輪中心體外型之比較 132 5.2.2 入口導流道 137 5.2.3 舌部間隙 142 5.2.4 電漿片腔體 147 5.3 葉輪設計 156 5.3.1 葉片入口角 156 5.3.2 葉片出口角 160 5.3.3 葉片數 164 5.4 電漿片擺放位置 167 第六章 共振器設計與噪音模擬分析 174 6.1 基準風機之聲場模擬結果 174 6.2 共振器之設計參數 182 6.2.1 共振器之幾何尺寸 182 6.2.2 共振器擺放位置 184 6.2.3 共振器安裝個數 188 6.3 裝配共振器風機之聲場模擬結果 195 第七章 結論與建議 207 7.1 結論 208 7.2 建議 212 參考文獻 215

[1] 行政院環保署,“空氣品質改善-細懸浮微粒管制”,http://air.epa.gov.tw/Public/suspended_particles.aspx#t1
[2] Eck, B., “Fans : Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans,” Pergamon Press, New York, 1973.
[3] Bowerman, R. and Acosta, A., “Effect of the Volume on Performance of a Centrifugal Pump Impeller,” Trans. ASME, Vol. 79, pp. 1057-1069, 1957.
[4] Moller, P. S., “A Radial Diffuser Using Incompressible Flow between Narrowly Speed Disk,” Journal of Basic Engineering, pp. 155-162, 1966.
[5] Leidel, W., “Einfluss Von Zungenabstand and Zungenradius auf Kennlinie und Gerausch eines Radial Ventilators,” DLR-FB, pp. 61-69, 1969.
[6] Raj, D. and Swim, W. B., ”Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an F-C Centrifugal Fan Rotor,” Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981.
[7] Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance,” Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
[8] Wright, T., “Centrifugal Fan Performance with Inlet Clearance,” Journal of Engineering for Gas Turbines and Power, Vol. 106 , pp. 906-912, 1984.
[9] Kjork, A. and Lofdahl, L., “Hot-Wire Measurements inside a Centrifugal Fan Impeller,” Journal of Fluids Engineering, Vol. 111, pp. 363-368, 1989.
[10] 吳慶財,“前傾式離心扇之實驗設計”,國立台灣工業技術學院機械工程技術研究所碩士論文,1993年。
[11] 廖家堃,“離心式鼓風機之流場與噪音研究”,國立清華大學動力機械工程學系碩士論文,1997年。
[12] 廖祿甫,“渦殼對離心式泵性能的影響”,國立成功大學航空太空工程學系碩士論文,1997年。
[13] 歐陽百峻,“新式筆記型電腦冷卻風扇之實驗研究”,國立台灣科技大學機械工程技術研究所碩士論文,2000年6月。
[14] Huang, J., Yin, M., and Yao, X. J., “Effects of Concealed Motor’s Shape on Performance of Forward Multi-Blade Centrifugal Fans,” Journal of Shanghai Jiaotong University, Vol. 35, No. 8, pp. 1196-1199, 2001.
[15] 許宏棋,“Pentium 4 筆記型電腦冷卻風扇之實驗研究”,國立台灣科技大學機械工程技術研究所碩士論文,2001年。
[16] 黃家烈,“筆記型電腦冷卻風扇之研究”,國立台灣科技大學機械工程技術研究所博士論文,2001年。
[17] 林顯群、林益輝、賴豐泉,“吹風機性能及噪音之改善研究”,中華民國「航太學會/燃燒學會/民航學會」航太聯合會議,高雄,2002年。
[18] 楊俊欽,“高性能、低噪音衛浴排風扇之實驗研究”,國立台灣科技大學機械工程技術研究所碩士論文,2003年。
[19] 孫鈞瑋,“前傾式離心風機數值與實驗之整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2004年。
[20] 李宗穎,“筆記型電腦散熱模組之數值與實驗整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2005年。
[21] 張哲維,“CPAP離心式風機之模擬與實驗整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2015年。
[22] 王品軒,“亥姆霍茲共振器應用於前傾式離心風扇之實驗與模擬整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2017年。
[23] Zeller, W. and Stang, H., “Predetermination of the Axial-Flow Fans,” Heizung-Luftung-Haustchnik, Vol. 9, No. 12, pp. 995-1054, 1957.
[24] Zeller, W., “Conerning Mathematical Treatment of Noise Behaviour in Fans for Air Conditioning Plants,” VID-Berichte, No. 38, pp. 695-708, 1959.
[25] Hüebner, G., “Noise Generated by Centrifugal Fans”, Siemens-Zeitschrift, Vol. 8, pp. 145-155, 1959.
[26] Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines,” Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
[27] Powell, A., “Theory of Vortex Sound”, The Journal of the Acoustical Society of America, Vol. 36, pp. 177-195, 1964.
[28] Neise, W., “Noise Reduction in Centrifugal Fans: a Literature Survey,” Journal of Sound and Viberation, Vol. 45, No. 3, pp. 375-403, 1976.
[29] Alster, M., “Improved Calculation of Resonant Frequencies of Helmhlotz Resonantors,” Journal of Sound and Vibration, Vol. 24, No. 1, pp. 63-65,1972.
[30] Beranck, L., “Noise and Vibration Control,” Institute of Noise Control Engineereering, Washington, DC, 1998.
[31] Parente, C. A., “Hybird Active/Passive Jet Engine Noise Suppression Systems,” NASA CR-1999-208875, NSL-RPT-98-002, February, 1999.
[32] Han, S. H., “Sound Reduction by a Helmholtz Resonator,” Master Thesis, The Department of Mechanical Engineering and Mechanics, Lehigh University, 2008.
[33] Han, S. S. and Rhim, Y. C., “Noise-Level Reduction of a Slim-Type Optical Disk Drive Using the Idea of a Helmholtz Resonator,” Transactions on Magnetics, Vol. 45, No. 5 , pp. 2217-2220, 2009.
[34] 陳彥彰,“亥姆霍茲共振器應用於管路風機之實驗與模擬整合研究”,國立台灣科技大學機械工程技術研究所碩士論文, 2014年。
[35] Zhao, Xiao-Dan, “Improving Low-Frequency Sound Absorption of Micro-Perforated Panel Absorbers by Using Mechanical Impedance Plate Combined with Helmholtz Resonators,” Master Thesis, School of Automobile and Traffic Engineering, Jiangsu University, 2016.
[36] Cai, Chen-zhi, “An Extended Neck versus a Spiral Neck of the Helmholtz Resonator,” Master Thesis, Department of Building Services Engineering, The Hong Kong Polytechnic University, 2016.
[37] Neise, W. and Koopman, G. H., “Reduction of Centrifugal Fan Noise by Use of Resonator,” Journal of Sound and Viberation, Vol. 72, No. 2, pp. 297-308, 1980.
[38] Neise, W. and Koopmann, G. H., “The Use of Resonators to Slience Centrifugal Blowers,” Journal of Sound and Vibration, Vol. 82, No. 1, pp. 17-27, 1982.
[39] 洪宗揚,“後傾式離心風機之噪音研究”,國立台灣工業技術學院碩士論文,1996年。
[40] 呂水煙,“前傾式離心風機之噪音研究”,國立台灣工業技術學院碩士論文, 1997年。
[41] 吳御銓,“λ/4減噪器應用在離心扇之數值與實務整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2014年。
[42] Arnone, A.,“ Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method”, NASA TM-106266, 1993.
[43] Su, M. M., Gu, C. A., and Miao, Y. M., “Numerical Study of Viscous Flow Field in Mixed-Flow Fan,” Journal of Xi’an Jiaotong University,Vol. 30, No. 10, pp. 55-63, 1996.
[44] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp.1787-1806, 1972.
[45] 黃家烈、許豐麟、林顯群,“進風口面積在新式筆記型電腦冷卻扇之研究”中華民國機械工程學會第十七屆全國學術研討會論文集,高雄,pp. 621-628,2000年。
[46] 游裕傑,“離心式電腦風扇的設計與分析”,國立成功大學機械工程學系碩士論文集,2002 年。
[47] Amano, R. S. and Cheng, X. C., “Aerodynamic Blade Optimal Design of Turbomachinery”, Proceedings of the International Gas Turbine Congress 2003, Tokyo, November 2-7, 2003.
[48] Kokturk, T., ” Design and Performance Analysis of a Reversible Axial Flow Fan”, M.S. Thesis, Middle East Technical University, February 2005.
[49] Elhadi, E. E. and Wu, K., “Study of Tip Vortex in Open Axial Flow Fan Using CFD and PIV Techniques”, 4th International Conference. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2005), Egypt, Sept. 2005.
[50] 李延青、鄭名山、李隆正,“後傾離心風機數值模式建立”,第二十二屆中國機械工程學會論文集,中壢,2005 年。
[51] 周志成,“新型離心式風扇數值與實驗整合研究”,國立台灣科技大學機械工程研究所碩士論文,2006 年。
[52] 洪國泰,“小型軸流風扇之設計、模擬與實驗整合研究”,國立台灣科技大學機械工程系碩士論文,2007 年。
[53] 蔡明倫,”風扇性能評估與設計方法之整合研究”,國立台灣科技大學機械工程技術研究所博士論文,2010 年。
[54] 尤清,“無扇葉風扇之數值與實驗整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2014年。
[55] Lighthill, M. J., “On Sound Generation Aerodynamically - I. General Theory,” Proc. Roy. Soc., London, Vol. 211, pp. 564-587, 1952.
[56] Lowson, M. V., “The Sound Field for Singularities in Motion,” Proceedings of the Royal Society of London, pp. 559-572,1965.
[57] Liu, Q., Qi, D., and Mao, Y., “Numerical Calculation of Centrifugal Fan Noise,” Proceedings of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, Vol. 220, No. 8, pp. 1167-1177, 2006.
[58] Rafael, B. T., Sandra, V. S., Juan Pablo, H. C., and Carlos, S. M., “Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan,” Journal of Fluids Engineering, Vol. 128, pp. 359-369, 2006.
[59] Lu, H. Z., Huang, L., So, R. M. C., and Wang, J., “A Computational Study of the Interaction Noise from a Small Axial-Flow Fan,” Journal of the Acoustical Society of America, Vol. 122, pp. 1404-1415, 2007.
[60] Bleier, Frank P., “Fan Handbook: Selection, Application, and Design,” McGraw Hill, 1997.
[61] Morinushi, K., “The Influence of Geometric Parameters on F. C. Centrifugal Fan Noise,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 109, pp. 227-234, 1987.
[62] Bommer, L., Grundmann, R., Klaes, K., and Kramer, C., “Effect Blade Design on Centrifugal Fan Noise and Performance,” Noise Control Engineering, Vol. 42, pp. 91-101, 1995.
[63] Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners,” Technical Review-Mitsubishi Heavy Industries, Vol. 26, No. 3, pp. 173-179, 1989.
[64] CNS 8753, Determination of Sound Power Level of Noises for Fan, Blower, and Compressors, Chinese National Standard, 1982.
[65] Wikipedia http://en.wikipedia.org/wiki/Helmholtz_resonance
[66] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
[67] Hinze, J. O., “ Turbulence”, McGraw-Hill Publishing Co, 1975.
[68] Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342,1969.
[69] Curle, N. “ The Influence of Solid Boundaries upon Aerodynamic Sound,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 231, pp. 505–514, 1955.

無法下載圖示 全文公開日期 2023/08/30 (校內網路)
全文公開日期 2028/08/30 (校外網路)
全文公開日期 2068/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE