簡易檢索 / 詳目顯示

研究生: 李泓玟
Hong-Wen Li
論文名稱: 不平衡三相輸入電壓下矩陣轉換器為基礎的永磁同步電動機驅動系統性能改善研究
Research on Performance Improvement of a Matrix Converter-Based PMSM Drive System Under Unbalanced Three-Phase Input Voltages
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
徐國鎧
Kuo-Kai Shyu
林長華
Chang-Hua Lin
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 148
中文關鍵詞: 矩陣轉換器不平衡三相永磁同步電動機切換策略抑制電流諧波
外文關鍵詞: matrix-converter, unbalance three-phase, permanent magnet synchronous motor, switching strategy, current harmonics elimination
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討不平衡三相輸入電壓下矩陣轉換器為基礎的永磁同步電動機驅動系統的性能改善。首先,說明永磁同步電動機的結構、特性與數學模式。其次,說明矩陣轉換器的架構與原理。然後,說明不平衡三相輸入電壓對矩陣轉換器驅動永磁同步電動機的影響。接著,針對矩陣轉換器輸出側電流與輸入側電流各提出一種改善方法,分別為空間向量脈波寬度調變補償法與虛擬直流鏈電壓控制法,用以抑制矩陣轉換器輸出側及輸入側電流諧波。
    本文以數位信號處理器型號為SH7237的晶片與現場可程式化邏輯閘陣列型號為10M16SAU169I7G的晶片作為計算的核心,控制電動機驅動系統。實測結果驗證本文所提不平衡三相輸入電壓下驅動系統的可行性與正確性。


    This thesis investigates the improving methods of a matrix converter-based permanent magnet synchronous motor drive system under unbalanced three-phase input voltages. First, the structures, characteristics, and mathematical models of permanent magnet synchronous motor are described. Then, the configurations and principles of the matrix converter are discussed. Next, the influences of the unbalanced three-phase input voltages for the matrix converter-based permanent magnet synchronous motor drive systems are explained. After that, two methods including a space-vector pulse-width modulation compensation method for eliminating the output currents and a virtual DC link voltage control method for eliminating input currents are proposed.

    A digital signal processor, type SH7237, and a field programmable logic gate array, type 10M16SAU169I7G, are used as the computational center of the moter drive system. Experimental results verify the feasibility and correctness of the proposed methods under unbalanced three-phase input voltages.

    目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 7 1.4 大綱 8 第二章 永磁同步電動機 9 2.1 簡介 9 2.2 結構與特性 9 2.3 數學模式 13 第三章 矩陣轉換器 21 3.1 簡介 21 3.2 主電路架構 22 3.3 換向策略 24 3.4 箝位電路 28 第四章 矩陣轉換器的切換方法 30 4.1 簡介 30 4.2 直接切換法 32 4.3 間接切換法 34 4.3.1 虛擬直流鏈電壓法 37 4.3.2 輸入電流及輸出電壓空間向量調變法 41 第五章 三相輸入電壓不平衡控制方法 47 5.1 簡介 47 5.2 方法一(SVPWM補償法) 49 5.3 方法二(虛擬直流鏈電壓控制法) 53 第六章 系統研製 59 6.1 簡介 59 6.2 硬體電路 61 6.2.1 矩陣轉換器主電路 61 6.2.2 驅動電路 64 6.2.3 電壓及電流偵測電路 66 6.2.4 箝位電路 68 6.2.5 數位信號處理器 69 6.2.6 現場可程式化邏輯閘陣列 70 6.3軟體程式設計 72 6.3.1 主程式 73 6.3.2 DSP中斷服務程式與FPGA程式 74 第七章 實測結果 80 7.1簡介 80 7.2 實測結果 83 第八章 結論與未來研究方向 112 參考文獻 114

    [1] J. d. Santiago, H. Bernhoff, B. Ekergard, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 475-484, February 2012.
    [2] T. F. Podlesak, D. C. Katsis, P. W. Wheeler, J. C. Clare, L. Empringham, and M. Bland, “A 150-kVA vector-controlled matrix converter induction motor drive,” IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 841-847, May 2005.
    [3] K. Matsuse and D. Matsuhashi, “New technical trends on adjustable speed AC motor drives,” Chinese Journal of Electrical Engineering, vol. 3, no. 1, pp. 1-9, June 2017.
    [4] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2322-2332, November 2012.
    [5] H. Kitano, T. Nakamura, D. Sekiguchi, N. Amemiya, Y. Itoh, M. Yoshikawa, Y. Ohashi, and N. Okumura, “Controllability of HTS induction/synchronous machine for variable speed control,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5202505-5202505, June 2013.

    [6] M. Centner and U. Schafer, “Optimized design of high-speed induction motors in respect of the electrical steel grade,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 288-295, July 2010.
    [7] Z. M. Zhao, S. Meng, C. C. Chan, and E. W. C. Lo, “A novel induction machine design suitable for inverter-driven variable speed systems,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 413-420, December 2000.
    [8] C. He and T. Wu, “Analysis and design of surface permanent magnet synchronous motor and generator,” CES Transactions on Electrical Machines and Systems, vol. 3, no. 1, pp. 94-100, March 2019.
    [9] F. Cui, Z. Sun, W. Xu, W. Zhou, and Y. Liu, “Comparative analysis of bilateral permanent magnet linear synchronous motors with different structures,” CES Transactions on Electrical Machines and Systems, vol. 4, no. 2, pp. 142-150, June 2020.
    [10] L. Fang, J. Jung, J. Hong, and J. Lee, “Study on high-efficiency performance in interior permanent-magnet synchronous motor with double-layer PM design,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4393-4396, November 2008.
    [11] J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC–AC converter topologies,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 4988-5006, November 2011.
    [12] S. Yongsug and T. A. Lipo, “Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1530-1540, July 2006.
    [13] P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, “Matrix converters: a technology review,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, pp. 276-288, April 2002.
    [14] S. Bouchiker, G. Capolino, and M. Poloujadoff, “Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1089-1099, November 1998.
    [15] E. Yamamoto, H. Hara, T. Uchino, M. Kawaji, T.J. Kume, J.K. Kang, and H. Krug, “Development of MCs and its applications in industry [industry forum],” IEEE Industrial Electronics Magazine, vol. 5, no. 1, pp. 4-12, March 2011.
    [16] J. Zhang, L. Li, and D. G. Dorrell, “Control and applications of direct matrix converters: a review,” Chinese Journal of Electrical Engineering, vol. 4, no. 2, pp. 18-27, June 2018.
    [17] M. Hamouda, H. F. Blanchette, and K. Al-Haddad, “Unity power factor operation of indirect matrix converter tied to unbalanced grid,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1095-1107, February 2016.
    [18] J. Lei, B. Zhou, J. Bian, X. Qin, and J. Wei, “A simple method for sinusoidal input currents of matrix converter under unbalanced input voltages,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 21-25, January 2016.
    [19] L. Gyugyi and B.R. Pelly,“Static power frequency changers: theory, performance, and application,“ New York: Wiley, 1976.
    [20] A. Alesina and M. Venturini, “Solid-state power conversion: a fourier analysis approach to generalized transformer synthesis,” IEEE Transactions on Circuits and Systems, vol. 28, no. 4, pp. 319-330, April 1981.
    [21] A. Alesina and M. Venturini, “Analysis and design of optimum-amplitude nine-switch direct AC-AC converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 101-112, January 1989.
    [22] J. Rodriguez, “A new control technique for AC-AC converters,“ IFAC Proceedings Volumes, vol. 16, no. 16, pp. 203-208, April 1983.
    [23] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Transactions on Industry Applications, vol. 31, no. 6, pp. 1234-1246, November 1995.
    [24] D. F. Chen and K. C. Yao, “A novel sliding-mode controller design for a matrix converter drive system,” IEEE ICHIS-2009, pp. 134-137, August 2009.
    [25] A. Formentini, A. Trentin, M. Marchesoni, P. Zanchetta, and P. Wheeler, “Speed finite control set model predictive control of a PMSM fed by matrix converter,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6786-6796, November 2015.
    [26] D. F. Chen and T. H. Liu, “Optimal controller design for a matrix converter based surface mounted PMSM drive system,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 1034-1046, August 2003.
    [27] S. Kim, Y. Yoon, and S. Sul, “Pulsewidth modulation method of matrix converter for reducing output current ripple,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2620-2629, October 2010.
    [28] D. Casadei, G. Serra, A. Tani, and L. Zarri, “A space vector modulation strategy for matrix converters minimizing the RMS value of the load current ripple,” IEEE IECON-2006 pp. 2757-2762, November 2006.
    [29] D. F. Chen and T. H. Liu, “Implementation of a novel matrix converter PMSM drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 863-875, July 2001.
    [30] C. Xia, J. Zhao, Y. Yan, and T. Shi, “A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction,” IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2700-2713, June 2014.
    [31] P. Nielsen, F. Blaabjerg, and J. K. Pedersen, “Space vector modulated matrix converter with minimized number of switchings and a feedforward compensation of input voltage unbalance,” IEEE PICPE-1996, pp. 833-839 January 1996.
    [32] D. Casadei, G. Serra, and A. Tani, “Reduction of the input current harmonic content in matrix converters under input/output unbalance,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 401-411, June 1998.
    [33] W. Xiong, Y. Sun, J. Lin, M. Su, H. Dan, M. Rivera, and J. M. Guerrero, “A cost-effective and low-complexity predictive control for matrix converters under unbalanced grid voltage conditions,” IEEE Access, vol. 7, no., pp. 43895-43905, April 2019.
    [34] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 245-254, October 2015.
    [35] L. Huber, D. Borojevic, and N. Burany, “Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors,” IET Electronics Power Applications, vol. 139, no. 2, pp. 103-113, March 1992.
    [36] P. W. Wheeler, J. C. Clare, and L. Empringham, “Enhancement of matrix converter output waveform quality using minimized commutation times,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 240-244, February 2004.
    [37] P. W. Wheeler, J. C. Clare, and L. Empringham, “Minimization of matrix converter commutation times,” European Power Electronics vol. 13, no. 1, pp. 12-19, February 2003.
    [38] K. Mino, Y. Okuma, and K. Kuroki, “Direct-linked-type frequency changer based on DC-clamped bilateral switching circuit topology,” IEEE Transactions on Industry Applications, vol. 34, no. 6, pp. 1309-1317, December 1998.
    [39] I. Sato, J. Itoh, H. Ohguchi, A. Odaka, and H. Mine, “An improvement method of matrix converter drives under input voltage disturbances,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 132-138, January 2007.
    [40] A. V. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Transactions on Power Delivery, vol. 16, no. 4, pp. 782-790, October 2001.
    [41] J. Lei, B. Zhou, J. Bian, J. Wei, Y. Zhu, J. Yu, and Y. Yang, “Feedback control strategy to eliminate the input current harmonics of matrix converter under unbalanced input voltages,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 878-888, January 2017.
    [42] S. Hong-Seok and N. Kwanghee, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 953-959, October 1999.
    [43] Y. Chen, T. Liu, S. Syu and C. Nguyen-Manh, "A sensorless matrix-converter IPMSM drive based on high frequency injection method,"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 360-366, October 2014.

    無法下載圖示 全文公開日期 2024/07/13 (校內網路)
    全文公開日期 2026/07/13 (校外網路)
    全文公開日期 2026/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE