簡易檢索 / 詳目顯示

研究生: 林承盈
Cheng-Ying Lin
論文名稱: 適用於相移全橋轉換器之切換模式控制技術開發
Development of Switching Mode Control Technique for Phase-shifted Full-bridge Converters
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 133
中文關鍵詞: 零電壓切換相移控制全橋轉換器數位控制
外文關鍵詞: ZVS, phase-shift control, full-bridge converter, digital signal controller
相關次數: 點閱:274下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

相移全橋(phase shifted full bridge, PSFB)轉換器被廣泛應用於中高功率的應用場合,如伺服器或電信電源,因為它無需輔助電路便可實現零電壓切換(zero-voltage switching, ZVS)。 PSFB轉換器的優點包括高效率、功率元件的電壓、電流應力較低以及固定頻率控制。然而,PSFB轉換器亦有落後臂不易達成ZVS以及循環電流較大等缺點。另一方面,操作於非對稱脈波寬度調變(asymmetrical pule-width modulation, APWM)的全橋(full bridge, FB)轉換器也可以實現零電壓切換。使用APWM控制可消除傳統PSFB轉換器的循環電流,不過APWM全橋變換器也有最大責任週期受限制以及在輕載時不易達成ZVS之缺點。
本文提出多模式切換控制之全橋轉換器,控制器會根據負載大小切換為不同的工作模式,本系統在空載時操作在突衝模式,輕載時為相移模式,重載時則為非對稱脈波寬度調變模式。由於相移式全橋以及非對稱脈波寬度調變全橋在固定盲時下,重載時會因本體二極體導通時間增加而造成效率降低,因此本文亦提出變動盲時時間技術,其會隨著負載增加而將盲時時間減少,此方法有助於提升重載時的效率。本文首先探討兩種控制法的電路操作原理及設計準則,再透過數位訊號處理器dsPIC33FJ16GS502實現多模式切換、非對稱脈波寬度調變控制、相移控制及變動盲時控制。本文實際製作一輸出功率為480W (24VDC/20A)之直流/直流轉換器,以驗證所提出之控制方法的正確性與可行性,根據實驗結果,本系統在不同負載下所有操作模式的平均效率比傳統相移全橋高2%~3%。


Phase shifted full bridge (PSFB) converters are widely used in medium to high power applications like server or telecom power supplies because it can achieve zero-voltage switching (ZVS) without requiring auxiliary circuits. The advantages of PSFB converter include high efficiency, low voltage and current stress on power devices, and fixed-frequency control. However, the PSFB converter suffers drawbacks such as narrow ZVS range for the lagging leg and large circulating current. On the other hand, operating a full bridge (FB) converter with asymmetrical pule-width modulation (APWM) can eliminate switching losses without increasing conduction losses. Using the APWM strategy, circulating currents that exists in a traditional PSFB converter can also eliminated. Nonetheless, APWM FB converter has some drawbacks such as limited maximum duty cycle and narrow ZVS range.
In this thesis, a novel switching control technique for FB converter is proposed. The presented system changes the operating mode of the FB converter according to load conditions. For very light load, burst mode control is employed. Next, phase shifted control is used under light-to-medium load conditions and APWM control is chosen for heavy load condition. To further improve the efficiency, adaptive dead time techniques for PSFB and APWM are also derived and applied. In this thesis, the operating principles, design guidelines will be described first. A low cost digital signal controller dsPIC33FJ16GS502 is then adopted in this thesis to realize the proposed switching control. To validate the correctness and the effectiveness of the proposed method, a 480 W, 24V to 20A prototyping circuit is implemented and tested. According to the experimental results, the proposed switching control technique can improve the efficiency by 2 % ~ 3% comparing with conventional PSFB converter.

第一章 緒論 闡述本論文之研究背景與動機。 第二章全橋轉換器控制技術簡介 介紹全橋轉換器架構及相移式與非對稱脈波寬度調變控制方法,以及各模式下之電路動作原理與分析。 第三章全橋轉換器效率提升技術 介紹全橋轉換器缺點,並針對其缺點改善及效率提升技術進行探討。 第四章全橋轉換器硬體電路規格制定與設計 針對硬體電路制定規格並提出設計流程,進而將所設計之元件相關參數在實際電路中予以實現。 第五章全橋轉換器韌體介紹 介紹dsPIC33FJ16GS502微處理機之特色以及說明程式流程,其包含數位濾波器、增量型PID等。 第六章 實驗結果與討論 針對實驗波形、數據予以分析、討論。 第七章 結論與未來展望 總結本論文之研究結果,並對未來研究方向進行探討。

[1] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Transactions on Power Electronics, Vol. 5, No. 3, July 1990, pp. 293-304.
[2] J. Dudrik and J. Oetter, “High-frequency soft-switching DC-DC converters for voltage and current DC power sources,” Acta Polytechnica Hungarica, Vol. 4, No. 2, 2007, pp. 29-46.
[3] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, “Design considerations for high-voltage, high-power, full bridge zero-voltage-switched pwm converter,” IEEE APEC, 1990, pp. 275-284.
[4] C. A. Canesin and I. Barbi, “Novel zero-current-switching PWM converters,” IEEE Transactions on Industrial Electronics, Vol. 44, No. 3, June 1997, pp. 372-381.
[5] Y. S. Lai and Z. J. Su, “New integrated control technique for two-stage server power to improve efficiency under the light-load condition” IEEE Transactions on Industrial Electronics, Vol. 62, No. 11, Nov 2015, pp. 6944-6954.
[6] Bo-Yuan Chen and Yen-Shin Lai, “Switching control technique of phase shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Transactions on Power Electronics, vol. 28, No. 11, Apr. 2010.
[7] D. Y. Kim, C. E. Kim, and G. W. Moon, “Variable delay time method in the phase-shifted full-bridge converter for reduced power consumption under light load conditions,” IEEE Transactions on Power Electronics, vol. 28, No. 11, pp. 5120–5127, Nov. 2013.

[8] 黃崇哲,「用於相移全橋轉換器輕載效率提升之可變怠滯時間控制策略」,國立中山大學,中華民國 103 年七月。
[9] Lei Zhao, Haoyu Li, Yanxue Yu and Yantian Wang, “A novel choice procedure of magnetic component values for phase shifted full bridge converters with a variable dead-time control method” Energies, May. 2015, pp. 9655 - 9669.
[10] Bin Gu and Jih-Sheng Lai, “Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Transactions on Power Electronics, vol. 28, No. 3, Mar. 2013, pp. 1132 - 1144.
[11] S. Moisseev, S. Hamada and M. Nakaoka, “Full-bridge soft-switching phase-shifted PWM DC-DC power converter using tapped inductor filter” Electronics Letters, vol. 39, No. 12, Jun. 2003, pp. 924 - 951.
[12] M. Hallworth, B. A. Potter and S. A. Shirsavar, “Analytical calculation of resonant inductance for zero voltage switching in phase-shifted full-bridge converters” IET Power Electronics, vol. 6, No. 3, Mar. 2013, pp. 523 - 534.
[13] Y. S. Lai, Z. J. Su and Y. T. Chang, “Novel phase-shift control technique for full-bridge converter to reduce thermal imbalance under light-load condition” IEEE Transactions on Industry Applications, vol. 51, No. 2, Apr 2015, pp. 1651 - 1659.
[14] D. R. Lopez-Flores, J. L. Duran-Gomez, R. Herrera-Salcedo and J. A. Pineda-Gomez, “Analysis and Design of a Simple Digital Control Algorithm for a Phase-Shift-Full-Bridge DC-DC Power Converter,” IEEE Power Electronics Congress, August 2010, pp. 205-212

[15] J. H. Cho, H. W. Seong, S. M. Jung, J. S. Park, G. W. Moon and M. J. Youn, “Implementation of Digitally Controlled Phase Shift Full Bridge Converter for Server Power Supply,” IEEE Energy Conversion Congress and Exposition, September 2010, pp. 802-809.
[16] Y. S. Lai and K. M. Ho, “FPGA-Based Digital-Controlled Power Converter with Universal Input Meeting 80 Plus Platinum Efficiency Code and Standby Power Code for Sever Power Applications,” IEEE Renewable Energy Research and Applications, November 2012, pp. 1-6.
[17] Y. S. Lai, Z. J. Su and Y. T. Chang, “Novel Phase-Shift Control Technique for Full-Bridge Converter to Reduce Thermal Imbalance under Light-Load Condition,” IEEE Transactions on Industry Applications, No. 99, August 2014, pp. 1.
[18] Paul Imbertson and Ned Mohan, “Asymmetrical duty cycle permits zero switching loss in PWM circuits with no conduction loss penalty” IEEE Transactions on Industry Applications, vol. 29, No. 1, Jan 1993, pp. 121 - 125.
[19] Gwan-Bon Koo, Gun-Woo Moon and Myung-Joong Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses” IEEE Transactions on Industrial Electronics, vol. 52, No. 1, Feb. 2005, pp. 228 - 235.
[20] Robert W Erickson, Fundamentals of Power Electronics, International. Thomson Publishing, 1997.
[21] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage switched pwm converter,” IEEE APEC, pp. 275–284, Mar.1990.

[22] G. Hua, F.C. Lee, and M. M. Jovanovic, “An improved full-bridge zero-voltage-switched pwm converter using a saturable inductor,” IEEE PESC, pp. 189-194, Jun. 1991.
[23] I. Barbi, D.C. Martins, and R. Prado, “Effects of nonlinear resonant inductor on the behavior of ZVS quasi-resonant converters,” in Conf.Rec., IEEE Power Electronics Special., pp. 522-527, Jun.1990.
[24] S. Hamada, M. Michihira, and M. Nakaoka, “Using a tapped inductor for reducing conduction losses in a soft switching PWM dc–dc converter,” in EPE Conf., vol. 3, pp.130–134, Sep.1993.
[25] I. Lee and G. Moon, “Soft-switching DC/DC converter with a full ZVS range and reduced output filter for high-voltage applications,” IEEE Transactions on Power Electronics, vol. 28, No. 1, pp. 112–112, Jan. 2013.
[26] M. Ordonez and J. E. Quaicoe, “Soft-switching techniques for efficiency gains in full-bridge fuel cell power conversion,” IEEE Transactions on Power Electronics, vol. 26, No. 2, pp. 482–492, Feb. 2011.
[27] Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,” Available: http://www.microchip.com.
[28] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
[29] Microchip Technology Inc., “Implementing FIR and IIR digital filters using PIC18 microcontrollers,” Application Note AN852, 2002.
[30] Momentum Data Systems Inc., “Filter design for dsPIC™ DSC digital filter design and analysis system,” dsPIC Filter Design Reference Guide, 2008.

QR CODE