簡易檢索 / 詳目顯示

研究生: 陳皓偉
Hao-Wei Chen
論文名稱: 應用五苯環氧化物於有機薄膜電晶體特性與可靠度改善之研究
Performance and Reliability Improvement by Pentacenequinone Injection and Passivation Layers for Organic Thin-Film Transistor
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
王錫九
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 有機薄膜電晶體注入層鈍化層
外文關鍵詞: organic thin-film transistors, injection layer, passivation layer
相關次數: 點閱:315下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究五苯環(Pentacene)之氧化物五苯醌(Pentacenequinone)作為注入層(Injection layer)以及鈍化層(Passivation layer)之有機薄膜電晶體,因一般有機薄膜電晶體之金屬與半導體接觸方式為蕭基接觸,載子在傳輸時需要更大的能量跨越能障,因此接觸電阻上升,電特性下降,且有機薄膜電晶體之可靠度通常比無機薄膜電晶體還要差,原因在於有機材料容易受到水氣的影響,再加上水為極性分子,若穿透至半導體內部不但會造成缺陷增加,也會受到電壓的影響形成電偶極捕捉載子,造成臨界電壓偏移和特性劣化,因此本論文的主軸為改善薄膜電晶體之金半接觸以極增加元件之可靠度。
論文的一開始,我們研究使用注入層對於元件特性的改善,使用的材料五苯醌為絕緣層材料,因此可以做為注入層之材料,我們利用熱蒸鍍沉積不同厚度之注入層於有機半導體表面,比較元件電性差異,經由數據發現5 nm之厚度為最佳值,能夠改善金屬電極與有機半導體接面的接觸效應,降低接觸電阻並提升元件特性,且通道長度100 μm之元件改善程度比150 μm還要大,原因在於尺寸微縮時,接觸電阻佔總電阻的比例提升,所以改善的幅度有所差異,最後我們對於注入層進行表面形貌掃描,推論出注入層之成膜方式與電流傳遞方式。
同時我們發現元件在負閘極偏壓下,隨著注入層的厚度增加,臨界偏壓的偏移量也越小,推論其原因為注入層於背通道抵擋了水氣之入侵,因此我們在元件上方蒸鍍厚度為150 nm之PQ鈍化層,比較有無鈍化層之元件差異,從結果得知加入鈍化層並不會改變元件的特性,且靜置在相對濕度百分之五十至六十之大氣下九十六小時,其穩定性與壽命都比未使用鈍化層之元件好,在施加正閘極偏壓或負閘極偏壓之劣化測試下,加入鈍化層之元件在臨界電壓的偏移及電流衰減方面都有很大的改善。


This thesis applying pentacenequinone (PQ) as injection layer and passivation layer for organic thin-film transistors. We discuss the electrical characteristics and reliability with and without the additional layer.
Schottky barrier between metal electrode and organic semiconductor makes carrier transport efficiency decrease. As a result, the contact resistance increases and affects the electrical characteristic. Furthermore, organic material is more sensitive to the environment than inorganic material. Moisture easily penetrates into organic semiconductor and increases trap sites to catch carrier, therefore, the threshold shift and the reliability decrease. According to the above reasons, we focus on the improvement of performance and the enhancement on reliability in this thesis.
First, we use top contact structure and deposit different thickness of PQ on the active layer, finding out the best performance at the thickness of 5 nm. Injection layer changes the contact mode from schottky contact to quasi-ohmic contact and decreases the contact resistance. When the channel length decreases from 150 μm to 100 μm, the mobility improves from 15% to 79% that is caused by the contact resistance is in majority of total resistance. We also presume the electrical conducting model with injection layer by using AFM to scan the surface appearance.
In additional, we find out that the device with injection layer’s Vth shift variation is less than the device without injection layer under gate bias stress. Presuming the reason is the help of injection layer keeping back channel from the penetration of moisture, we start second part of experiment for adding 150 nm passivation layer on the device. The result indicates that the device with passivation layer have good reliability under atmosphere and different gate bias stress. Most important of all, using thermal evaporation to deposit passivation layer won’t degrade the device performance and without breaking vacuum to complete the device fabrication.

論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文大綱 5 第二章 有機薄膜電晶體介紹 6 2.1 有機半導體介紹 6 2.1.1 有機半導體概論 6 2.1.2 有機半導體Pentacene之特性介紹 9 2.2 有機半導體之傳輸機制 10 2.2.1載子跳躍模型機制 (Hopping Model) 12 2.2.2陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 13 2.2.3偏極子模型機制 (The polaron model) 14 2.3有機薄膜電晶體結構 15 2.4 有機薄膜電晶體之操作模式 17 2.5 電性參數萃取方式 23 2.5.1 載子移動率(Mobility, μ) 23 2.5.2 臨界電壓(Threshold Voltage, Vth) 25 2.5.3 次臨界斜率(Subthreshold Swing, S.S.) 26 2.5.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 27 第三章 實驗方法與概論 30 3.1 有機薄膜電晶體之製作流程 30 3.1.1 基板(Substrate) 30 3.1.2 閘極(Gate) 30 3.1.3 閘極絕緣層(Gate Insulator Layer) 31 3.1.3.1 聚乙烯苯酚(PVP)之製備 32 3.1.3.2 閘極絕緣層的塗佈與烘烤 32 3.1.4 主動層(Active Layer) 33 3.1.5 載子注入層(Carrier Injection Layer) 36 3.1.6 源極/汲極(Source/Drain) 38 3.1.7 鈍化層(Passivation Layer)40 3.2分析設備介紹及製程機台(Semiconductor Parameter Analyzer) 41 第四章 不同厚度之注入層對有機薄膜電晶體特性之影響 45 4.1簡介 45 4.2實驗參數 45 4.3元件製作 46 4.4實驗結果與分析 47 第五章 使用鈍化層對有機薄膜電晶體可靠度之影響 64 5.1簡介64 5.2實驗參數 65 5.3元件製作 65 5.4實驗結果與分析 66 5.4.1鈍化層對元件特性及水氣抵抗力之研究 70 5.4.2鈍化層在負閘極偏壓下對元件可靠度之研究 74 5.4.3鈍化層在正閘極偏壓下對元件可靠度之研究 81 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 88

[1] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors,” Thin Solid Films, Vol. 438, p.279 (2003).

[2] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).

[3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,“Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).

[4] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee , Y. Yi, M. H. Cho, “Improvement of The Contact Resistance Between ITO and Pentacene Using Various Metal-Oxide Interlayers,” Organic Electronics, Vol. 9, pp. 1140–1145 (2008).

[5] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, pp.767–770 (2012).

[6] C. B. Park, J. D. Lee, “Effect of Stacked Dielectric with High Dielectric Constant and Surface Modification On Current Enhancement in Pentacene Thin-film Transistors,” Current Applied Physics, Vol. 13, pp.170-175 (2013).

[7] N. J. Watkins, L. Yan, and Y. Gao, “Electronic Structure Symmetry of Interfaces Between Pentacene and Metals,” Applied Physics Letters, Vol. 80, p.4384 (2002).

[8] H. Peisert, M. Knupfer, and J. Fink, “Energy Level Alignment at Organic/Metal Interfaces: Dipole and Ionization Potential,” Applied Physics Letters, Vol. 81, p.2400 (2002).

[9] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual Role of Lif as a Hole-Injection Buffer in Organic Light-Emitting Diodes,” Applied Physics Letters, Vol. 84, p.2913 (2004).

[10] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou,“Buffer-Layer-Induced Barrier Reduction: Role of Tunneling in Organic Light-Emitting Devices,” Applied Physics Letters, Vol. 84, p.425 (2004).

[11] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode,” Journal of Applied Physics, Vol. 95, p.3828 (2004).

[12] J. Li, X.W Zhang, L. Zhang, Khizar, X.Y Jiang, W.Q Zhu, and Z.L Zhang, “Improving Organic Transistor Performance Through Contact-Area-Limited Doping,” Solid State Communications, Vol. 149, pp.1826-1830 (2009).

[13] C. L Fan, and P. C Chiu, “Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting an Ultrathin Teflon Carrier Injection Layer,” Japanese Journal of Applied Physics, Vol. 50, p.100203 (2011).

[14] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).

[15] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐Effect Mobility of Poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, pp. 195 (1988).

[16] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen: in “Lower Dimensional Systems and Molecular Devices, ” NATO ASI Series (1989).

[17] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and Processable Regioregular Poly(3‐Hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility,” Applied Physics Letters, Vol. 69, pp. 4108 (1996).

[18] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744 (1998).

[19] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical Properties of Polyacetylene/ Polysiloxane Interface,” Journal of Applied Physics, Vol. 54, pp. 3255 (1983).

[20] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New Semiconductor Device Physics in Polymer Diodes and Transistors,” Nature, Vol. 335, pp. 137-141 (1988).

[21] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene Thin‐Film Transistor with High Carrier Mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

[22] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the Intrinsic Limits of Pentacene Field-Effect Transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

[23] Y.Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606 (1997).

[24] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications,” Journal of Applied Physics, Vol. 80, pp. 2501 (1996).

[25] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).

[26] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the Emiconductor/ Insulator Interface in the Characteristics of Π-Conjugated-Oligomer-Based Thin-Film Transistors,” Synthetic Metals, Vol. 51, pp. 419-424 (1992).

[27] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 Thin Film Transistors,” Applied Physics Letters, Vol. 67, pp. 121, (1995).

[28] J. Kastner, J. Paloheimo, and H. Kuzmany: in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512-515, (1993).

[29] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic N-Type Field-Effect Transistor,” Synthetic Metals, Vol. 66, pp. 257 (1994).

[30] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332 (1996).

[31] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-Effect Transistors Based on Intrinsic Molecular Semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503 (1990).

[32] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207 (1998).

[33] C.D. Dimitrakopoulos, and P.R.L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, pp. 99-117 (2002).

[34] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, pp. 234-238 (1998).

[35] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61 (1956).

[36] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors,” Canadian Journal of Physics. Vol. 34, p. 1356 (1956).

[37] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Dissertation, University of Cagliari, (2009).

[38] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, p. 509 (1970).

[39] C. W Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Dissertation, National Cheng Kung University, Tainan, Taiwan (2006).

[40] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Materials, Vol, 10, pp. 365377 (1998).

[41] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on Threshold Voltage Shift in Organic Thin-Film Transistors: Deposition of SiOH on SiO2 Gate-Insulator Surface,” Applied Physics Letters, Vol. 92, pp. 093309 (2008).

[42] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root Cause of Hysteresis in Organic Thin Film Transistor with Polymer Dielectric,” Organic Electronics, Vol. 7, pp. 271-275 (2006).

[43] Y. Roichman, and N. Tessler, “Structures of Polymer Field-Effect Transistor: Experimental and Numerical Analyses,” Applied Physics Letters, Vol. 80, p. 151 (2002).

[44] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, pp.1060-1064 (2001).

[45] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact Resistance in Organic Thin Film Transistors,” Applied Physics Letters, Vol. 84 (2004).

[46] S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York, CH. 7 (1981).

[47] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-Effect Transistor Made from Solution-Procceed Organic Semiconductors,” Synthetic Metals, Vol. 88, p. 37 (1997).

[48] J. Hwang, A. Wan, and A. Kahn, “Energetics of Metal–Organic Interfaces: New Experiments and Assessment of the Field,” Materials Science and Engineering, Vol. 64, pp. 1-31 (2009).

[49] R. Agrawal and S. Ghosh, “Electrical Characterization of Fermi Level Pinning in Metal/3,4,9,10 Perylenetetracarboxylic Dianhydride Interfaces,” Applied Physics Letters, Vol. 89, p. 222114 (2006).

[50] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Advanced Materials, Vol. 11, Issue 8 (1999).

[51] I. Salzmann, R. Opitz, S. Rogaschewski, J. P. Rabe, and N. Koch, “Phase Separation in Vacuum Codeposited Pentacene/6,13-Pentacenequinone Thin Films,” Physical Review B ,Vol. 75, p. 174108 (2007).

[52] P. Parisse, F. Bussolotti, M. Passacantando, L. Ottaviano, “3D Island Growth of 6,13 Pentacenequinone on Silicon Oxide and Gold,” Journal of Non-Crystalline Solids, Vol. 356 (2010).

[53] P. De Marco, F. Fioriti, F. Bisti, P. Parisse, S. Santucci et al. “Bulk Phase Two Dimensional Chiral Growth of 6,13 Pentacenequinone on SiO2,” Journal of Applied Physics, Vol. 109, p. 063508 (2011).

[54] J. Park, L.M Do, J.H. Bae , Y.S Jeong, C. Pearson ,and M. C. Petty, “Environmental Effects on the Electrical Behavior of Pentacene Thin-Film Transistors with a Poly(Methyl Methacrylate) Gate Insulator, ” Organic Electronics, Vol. 14, p. 2101 (2013).

[55] C.L. Fan, W.C. Lin, H.H. Peng, Y.Z. Lin, and B.R Huang, “Correlation Between Ambient Air and Continuous Bending Stress for The Electrical Reliability of Flexible Pentacene-Based Thin-Film Transistors, ” Japanese Journal of Applied Physics, Vol. 54, p. 011602 (2015).

[56] D. K. Hwang, K. Kim, J. H. Kim, and S. Im, “Structural and Optical Properties Of 6,13-Pentacenequinone Thin Films,” Applied Physics Letters, Vol. 85 (2004).

[57] J. H. Park, H. S Lee, J. Lee, K. Lee, G. Lee, K. H Yoon, M. M. Sung, and S. Im, “Stability-Improved Organic N-Channel Thin-Film Transistors with Nm-Thin Hydrophobic Polymer-Coated High-K Dielectrics, ” Physical Chemistry Chemical Physics, Vol. 14, pp. 14202-14206 (2012).

[58] D. K. Hwang, K. Kima, J. H. Kima, D. Y Jung, E. Kim, S. Im, “Structural and Optical Properties of 6,13-Pentacenequinone Film,” Applied Surface Science, Vol. 244, pp. 615-618 (2005).

[59] H. S Lee, K. H. Lee, C. H. Park, P. J. Jeon, K. Choi, D. H. Kim, H. R. Kim, G. H. Lee, J. H. Kim and S. Im, “Ambient-Protecting Organic Light Transducer Grown on Pentacene-Channel of Photo-Gating Complementary Inverter,” Journal of Materials Chemistry, Vol. 22, p. 4444 (2012).

[60] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov,“Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials,” Physical Review Letters, Vol. 81, p. 4472 (1998).

[61] Z. T Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras,“Humidity Sensors Based on Pentacene Thin-Film Transistors,” Applied Physics Letters, Vol. 81, No. 24, pp. 4643-4645 (2002).

[62] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma,“H2O Effect on the Stability of Organic Thin-Film Field-Effect Transistors,” Applied Physics Letters, Vol. 83, p. 1644 (2003).

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE