簡易檢索 / 詳目顯示

研究生: 林孟箴
Meng-chen Lin
論文名稱: 利用創新製程製作複眼微透鏡與應用於提升有機發光二極體發光效能之研究
An innovative fabrication of compound-eye microlens applied to enhance luminance efficiency of organic light emitting diode
指導教授: 趙振綱
Ching-Kong Chao
林宗鴻
Tsung-Hung Lin
口試委員: 張瑞慶
Rwei-Ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 161
中文關鍵詞: 複眼高填充率微透鏡高徑比有機發光二極體
外文關鍵詞: compound-eye, high fill factor microlens, aspect ratio, OLED
相關次數: 點閱:251下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種具複眼結構的新型雙層微透鏡,應用於提升有機發光二極體(OLED)之發光效能。首先以光學軟體進行分析,並結合田口法分析微透鏡的最佳化尺寸,使複眼微透鏡附加於OLED上能有效提升軸向發光強度,並增加±(0°~75°)處發光範圍的光強。以及提出創新製程製作複眼微透鏡,力求降低製作成本與方便精準。本論文的特點在於OLED透過複眼微透鏡的附加不僅可以有效提升整體的發光強度,更可將光線強度均勻化,而非僅在垂直方向有所增強。經過模擬結果得知四種模組的效能排比為:複眼微透鏡(17.82%)>平凸透鏡(9.65%)>單層高填充率微透鏡(8.57%)>單一OLED,附加經田口法最佳化尺寸的複眼微透鏡,其發光效率可提升27.3%。由模擬結果得知,複眼微透鏡藉由平凸透鏡的使用以增加整體透鏡的高徑比,更能凸顯效益的提升,另外表面佈滿高填充率微透鏡則可有效將光源均勻分佈。
    在實驗部分,第一階段利用黃光微影製程與熱熔法製作微透鏡陣列,並藉由重複旋塗法,高速旋塗光阻得以完成100%填充率之微透鏡陣列,再透過PDMS翻模則可得到高填充率微透鏡陣列之光學薄膜。第二階段利用精密銑床銑切翻模之模具,再與光學薄膜以沖壓翻模法完成複眼微透鏡之製作。透鏡結構的外型與尺寸之特性可藉由光學顯微鏡(OM)、3D表面輪廓儀(3DProfiler)與掃描式電子顯微鏡(SEM)量測。製作波長約為550nm的綠光OLED後再與複眼微透鏡相互配置。
    最後的光學檢測部分,利用PL光激發光光譜儀先測得PDMS複眼微透鏡的透光率平均為98.69%,再將複眼微透鏡附加於OLED上進行效能檢測,以調整電壓0V~12V所輸出的結果做擷取,其提升OLED平均77.589%的發光效能。


    This study has presented a new type of double-layer structure with compound eye microlens which is used to enhance the luminous efficacy of organic light-emitting diode (OLED).At first, the optical software combining with Taguchi method was used to evaluate some different types of microlens model and optimize the microlens size. The optical simulation would intend to improve the light intensity of OLED in both axial angle and viewing angle ± (0°~75°).Then experiment was conducted to propose an innovative process to fabricate compound-eye microlens, and reduce production cost and accuracy. The experiment would aim to indicate that the new microlens applied to OLED not only could enhance luminous in the vertical direction but also could improve the overall luminous intensity and provide more uniform light intensity.
    The simulation results showed that four kinds of model have different intensity efficiency. In comparing with single OLED, the intensity efficiency of the compound-eye microlens, the plane-convex lens, and the plane high fill factor microlens have increased about 17.82%,9.65%, and 8.57% respectively. In the other hand, the robust design by Taguchi method has provided another compound-eye microlens with different size, which could improve the luminous efficiency of 27.3%. According to the simulation results, compound-eye microlens with plane-convex microlens structure could directly increase the overall aspect ratio and the luminous efficiency. In addition, surface of lens covered with high fill factor microlens could effectively provide uniform distribution of the light source.
    In the experiment, the first stage was the photolithography process and photoresist reflow which were used to finish the microlens array. After that, by repeating the spin coating method, the high-speed spin coating photoresist layer was completed 100%fill factor of the microlens array. Then the optical film of the high fill factor microlens array could be obtained through the PDMS molds. The second stage was using a precision milling machine to manufacture a special mold. After the optical film was stamped into that mold, the PDMS was poured to complete the production of compound-eye microlens. The geometry contour and size of the lens structure would be measured by using optical microscopy (OM), 3D surface profiler(3DProfiler) and scanning electron microscopy (SEM) measurements. A green light OLED, which had wavelength about 550nm,was used to collocate with the compound-eye microlens.
    Finally, the optical detection was conducted. The PDMS compound- eye microlens light transmittance was measured by using Photoluminescence Emission Spectrometer. The result showed that the average light transmittance is 98.69%.After that the microlens was attached to OLED in the voltage input from 0V ~ 12V,the luminous efficacy would enhance about 77.589%.

    中文摘要 I ABSTRACT II 誌謝 IV 符號索引 VIII 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1前言 1 1.2有機發光二極體(OLED)之簡介 4 1.3有機發光二極體(OLED)之結構與發光原理 5 1.4有機發光二極體(OLED)之發光效率 8 1.5提升外量子效率之方法 10 1.5.1減少不發光模式 10 1.5.2減少波導效應 10 1.5.3減少全反射 11 1.6 微透鏡之介紹 11 1.7 微透鏡附加於OLED元件之應用 12 1.8 微透鏡陣列之製法 18 1.8.1微透鏡之製作方式 18 1.8.2微透鏡模仁之製作方式 22 1.8.3高填充率微透鏡陣列之製作方式 25 1.8.4高高徑比微透鏡陣列之製作方式 34 1.9 研究動機與目的 37 1.10 論文架構 38 第二章 理論 40 2.1光源 40 2.2光波導現象與斯奈爾定律 (全反射定律與光學折射定律) 41 2.2.1 反射定律 41 2.2.2 折射定律 42 2.3光度學單位 44 2.3.1 光通量(Luminous flux) 44 2.3.2 發光強度(Luminous intensity) 44 2.3.3 光強度-輝度(Luminous) 45 2.4 微透鏡熱熔 46 2.5 複眼透鏡 48 第三章 微透鏡光學模擬之介紹 57 3.1 TracePro光學模擬軟體介紹 57 3.2 整體模擬程序 58 3.3 TracePro光學模擬之操作流程 59 3.4 光學模擬 61 3.4.1 有機發光二極體之模型建立 61 3.4.2 微透鏡之模型建立 65 3.4.3 分析模組之介紹 69 3.4.4 OLED之光源定義 69 3.5資料輸出之分析 71 3.6模型驗證 72 3.6.1 分析光線數測定 72 3.7微透鏡之結構設計與參數變異 75 3.8模型參數設計 77 3.9田口方法之介紹 78 第四章 實驗製程介紹 82 4.1複眼微透鏡之製作 83 4.2有機發光二極體(OLED)之製作 92 4.3光學檢測之儀器架設 100 第五章 光學模擬與實驗之結果與討論 103 5.1 輸出資料之單位選定 103 5.2 模組大小對於結果趨勢之影響 108 5.3 不同微透鏡形式應用於有機發光二極體之分析結果 109 5.4 微透鏡參數變異之影響 112 5.5 田口分析結果 114 5.6 光學模擬結果討論 119 5.7 複眼微透鏡之製作結果 121 5.8 有機發光二極體(OLED)之製作結果 130 5.9 光學檢測之結果 132 5.10實驗與檢測結果之討論 135 第六章 結論與未來展望 141 6.1 結論 141 6.2 未來展望 143 參考文獻 145 附錄 149

    [1] 工業材料雜誌,293期,(2011)。
    [2] OLED照明帶來的光明未來,工業材料雜誌,282期,(2010)。
    [3] 周志敏、紀愛華,LED、OLED照明技術與工程應用,電子工業出版社,(2011)。
    [4] OLED照明光源發展現況,工研院電子報,10005期,(2011)。
    [5] 具p-i-n 結構有機發光二極體之研究發展(上),全球液晶通Display All,(2008)。
    [6] 陳金鑫、黃孝文,OLED:有機電激發光材料與元件,五南出版社,(2006)。
    [7] C.C.Lee, Y.T.Chung,“Effect of deposition rate on device performance and ifetime of quasi-planar molecule-based organic light-emitting diodes,”國立台灣科技大學,碩士論文,(2010)。
    [8] LED照明競爭技術-OLED照明發展利基及市場展望,DIGITIMES Research,(2009)。
    [9] H.Y.Lin, Y.H.Ho, J.H.Lee, K.Y.Chen, J.H.Fang, S.C.Hsu, M.K.Wei, H.Y.Lin, J.H.Tsai, T.C.Wu,“Patterned microlens array for efficiency improvement of all-pixelated organic light-emitting devices,” Opt.Express, vol.16, pp.11044-11051, (2008)。
    [10] N.K.Patel, S.Cina, J.H.Burroughes,“High-efficiency organic light-emitting diodes,” IEEE J. Selected Topics in Quantum Electronics, Vol. 8, 346~361, (2002)。
    [11] S.Mo‥ller, S.R.Forrest,“Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” (2002)。
    [12] 魏茂國、吳承霖、林憲志、方正豪、蘇彥瑜、葉穎隆、林冠宏、林政勳、林蓓憶、蕭亞雯、陳彥霖、賴至緯, ”The study of microlens array applying on the planar lighting devices”,(2007)。
    [13] M.K.Wei, J.H.Lee, H.Y.Lin, Y.H.Ho, K.Y.Chen, C.C.Lin, C.F.Wu,H.Y.Lin, J.H.Tsaiand, T.C.Wu,“Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10,(2008)。
    [14] M.K.Wei, H.Y.Lin, J.H.Lee, K.Y.Chen, Y.H.Ho, C.C.Lin, C.F.Wu, H.Y.Lin, J.H.Tsai, T.C.Wu,“Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array,” Optics Communications 281 , 5625–5632,(2008)。

    [15] K.H. Liu, M.F.Chen, C.T.Pan, M.Y.Chang, W.Y.Huang,“brication of various dimensions of high fill-factor micro-lens arrays for OLED package,” (2010)。
    [16] C.T. Pan, Y.C.Chen, M.F.Chen, Y.C.Hsu,“Fabrication and design of various dimensions of multi-step ashperical microlens arrays for OLED package,” Optics Communications 284 ,3323–3330, (2011)。
    [17] 最新照明技術登場,比白熾燈更亮的白光OLED研製成功,global sources 電子工程專輯,(2008)。
    [18] T.Okamoto,M.Mori,T.Karasawa,S.Hayakawa,I.Seo, H.Sato,“Ultraviolet-cured polymer microlens arrays,” Vol. 38, No. 14 y APPLIED OPTICS,(1999)。
    [19] S.Lazare, J.Lopez, J.M.Turlet, M. Kufner, S.Kufner, P.Chavel,“Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate)followed by styrene diffusion,”Vol.35,No.22y APPLIED OPTICS,(1996)。
    [20] H. Ottevaere, B Volckaerts, M Vervaeke, P Vynck, A Hermanne,H. Thienpont ,
    “Plastic Microlens Arrays by Deep Lithography with Protons:fabrication and characterization,”(2003)。
    [21] S.Sizinger, J.Jahns,“Microoptics,”Wiely-Vch,(1999)。
    [22] V.Narayan , J. A.Tatum , W.R.Cox , T.Chen , D.J.Hayes,“Microjet Fabrication of Microlens Arrays,”,VOL. 6, NO. 9,(1994)。
    [23] D.Xie,H.Zhang,X.Shu, J.Xiao,“Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-ondemand inkjet technology,”Vol.20, No.14,(2012)。
    [24] L.Wang,Z.J.Su, C.Y.Lee,“ Micro-lens Array Fabricated by Using Micro-drop Method,”國立清華大學電機工程學系,碩士論文,(2004)。
    [25]C.W.Luo,Y.C.Chiang,H.C.Cheng,C.Z.Wu,C.F.Huang,C.W.Wu,Y.K.Shen,Y.Lin,“A Novel and Rapid Fabrication for Microlens Arrays Using Microinjection Molding, ’’(2011)。
    [26] R . Seltmann , W . Doleschal , A . Gelmer , H . Ktick , R . Melcher, J . Panfler I, G.Zimmer, “ New system for fast submicron optical direct writing,’’ Microelectronic Engineering 30,(1996)。
    [27] Z .D . Popovic , R .A . Sprague, G .A .N. Connell, “Technique for monolithic fabrication of microlens arrays,’’ Vol. 27 , No, 7 APPLIED OPTICS,(1988)。
    [28] N . P. Eisenberg , M . Manevich , S. Noach , M. Klebanov, V. Lyubin ,“ New types of microlens arrays for the IR based on inorganic chalcogenide photoresists,’’Materials Science in Semiconductor Processing 3,443±448, (2000)。
    [29] All-Glass Gray Scale Photolithography,Microlens Array, http://www.canyonmaterials.com/CMI-01-88-3.html。
    [30] G J.Wang, V.Chin,“A Study on Fabrication of Non-spherical Refraction Microlens Array by Gray-scale Mask,”國立中興大學精密工程研究所,碩士論文,(2001)。
    [31] Sławomir Zio’łkowski,I.Frese,H.Kasprzak,S.Kufner,“Contactless Embossing of Microlenses-a parameter Study,”Opt. Eng. 42(5), 1451-1455 ,(2003)。
    [32] H.P.Herzig,“Micro-Optics: Elements, Systems and Applications, ”CRC PressINC, (1997)。
    [33] C.T.Pan,W.C.Lee,“Fabrication of aspherical micro-lens using modified LIGA process,”國立中山大學機械與機電工程學系研究所,碩士論文,(2009) 。
    [34] A.K.Chu,W.H.Hu,“Microlens array based on silicon molding technology for OLED application,”國立中山大學光電工程學系研究所,碩士論文,(2010)。
    [35] T.H.Lin,H.Yang,C.K.Chao, “New high fill-factor triangular micro-lens array fabrication method using UV proximity printing,”(2008)。
    [36] C.K.Chao,T.H.Lin,H.C.S, “Fabrication and application of novel high fill factor dual-curvature microlens to organic light emitting diode,”國立臺灣科技大學機械工程研究所,碩士論文,(2011)。
    [37] S.H.Eom, Ed.Wrzesniewski, J.Xue,“Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices ,”Organic Electronics 12 , 472–476, (2011)。
    [38]H.Jin.Nam, D.Y.Jung, G.R.Yi, H.Choi,“Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,”Langmuir, 22, 7358-7363,(2006)。
    [39] L.Malaquin, T.Kraus, H.Schmid, E.Delamarche,H.Wolf,“Controlled Particle Placement through Convective and Capillary Assembly,”Langmuir , 23, 11513-11521,(2007)。
    [40] S.Y.Hong,“The robust design for microlens array mold insert fabrication using the incomplete developing and thermal reflow process,”(2007)。
    [41] C.T.Pan,C.H.Su,“Fabrication of gapless triangular micro-lens Array, ”(2007)。
    [42] H.Kwon, Y.Yee, C.H.Jeong, H.J.Nam ,J.U.Bu,“A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes, ”(2008)。
    [43] S.Y.Wang, C.C.Huang,“Computer Simulation for the Fabrication of Hexagonal Micro Lens Array by Using Dragging Process with Excimer Laser.’’正修科技大學機電工程研究所,(2004)。
    [44]F.C.Chen, H.C.Kan,“Enhanced Light Out-Coupling Efficiency of Polymer Light Emitting Diodes with a Microlens Array,”國立交通大學電機學院顯示科技研究所,碩士論文,(2006)。
    [45] H.Y.Lin,J.H.Lee, M.K.Wei, K.Y.Chen,S.C.Hsu, Y.H.Ho, C.Y.Lin,“Optical characteristics of the OLED with microlens array film Attachment,”(2007)。
    [46] 可見光,維基百科,http://zh.wikipedia.org/zh-tw/%E5%8F%AF%E8%A7%81%E5%85%89。
    [47] 初醒悟,照明设计, http://blog.alighting.cn/1266/archive/2012/10/5/291596.html,(2012)。
    [48] 物理園, http://www.phy.cuhk.edu.hk/phyworld/main.html。
    [49] 胡國文,民用建築電器技術與設計,清華大學出版社,(2005)。
    [50] 楊建人,光學原理,徐氏基金會,(1996)。
    [51] EEFOCUS,http://www.eefocus.com/book/。
    [52] M.K.Wei, S.J.Lin,“Fabrication of Microlens Arrays with Precise Bases and Their Applications,”國立東華大學材料科學與工程學系,碩士論文,(2008)。
    [53] 折射式微透鏡陣列介紹,國家實驗研究院儀器科技研究中心, http://www.itrc.narl.org.tw/Publication/Newsletter/no81/p12.php。
    [54] C.H.Lee,L.Wang,“Fabrication and Characterization of Multi-Scale Mirco Lens Arrays with Anti-reflection and Diffusion Properties,”國立台灣大學電機資訊學院光電工程學研究所,碩士論文,(2000)。
    [55] K.H.Jeong, J.Kim, LP. Lee,“Polymeric synthesis of biomimetic artificial compound eyes,”( 2005)。
    [56] EP. Chan, AJ. Crosby,“Fabricating Microlens Arrays by Surface Wrinkling,”Adv. Mater, 18, 3238–3242,(2006)。
    [57] R.Daniela, D. Jacques, UD. Zeitner, T‥unnermann Andreas,“Laser lithographic fabrication and characterization of a spherical artificial compound eye,”Optical Society of America,(2007)。
    [58] H.H.Yang,P.L.Liu,C.H.Liu,“Research of Microlens Bionic Compound Eye for Imagery Capture System,”國立中興大學精密工程研究所,碩士論文,(2010)。
    [59] APIC 愛發股份有限公司,http://www.apic.com.tw/。
    [60] 田口方法,http://doc.mbalib.com/view/2b8816770e952923a66993ad1e3e9166.html。

    QR CODE