簡易檢索 / 詳目顯示

研究生: 賴冠亨
Guan-Heng Lai
論文名稱: 格雷編碼結合脈衝反相相減改善即時超音波監測HIFU治療
Golay-Encoded Pulse-Inversion Subtraction to Improve Real-Time Ultrasound Monitoring of HIFU Therapy
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李夢麟
Meng-Lin Li
李百祺
Pai-Chi Li
廖愛禾
Ai-Ho Liao
沈哲州
Che-Chou Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 超音波影像導引之高能量聚焦超音波燒灼格雷編碼脈衝反相相減高能量聚焦超音波治療
外文關鍵詞: US-guided HIFU, Golay Excitation, Pulse-inversion Subtraction, HIFU Therapy
相關次數: 點閱:380下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波(Ultrasound)成像因為具有高時間解析度和相對低的成本,常被用於導引高能量聚焦超音波(HIFU)的治療手術。然而,HIFU的回音信號振幅通常遠大於成像信號,造成超音波影像上出現許多高回音的干擾圖案,導致難以使用即時超音波影像監測HIFU的治療過程。在本研究中提出了一種格雷編碼(Golay-encoded)脈衝反相相減(Pulse-inversion subtraction)的HIFU干擾消除方法,脈衝反相相減是將接收到的成像回音信號中的正脈衝減去負脈衝以消除HIFU干擾分量,此外成像採用格雷編碼激發,因此經過脈衝反相相減後的成像回波可藉由匹配濾波器(Matched filters)進行脈衝壓縮,能在有效地消除HIFU干擾的同時增強成像信號以改善信號干擾比(Signal-to-interference ratio),就能更清楚地觀察HIFU治療期間目標對象的變化。我們透過PVA仿體與離體豬肝的實驗評估了所提出方法的效能,研究結果顯示未使用脈衝反相相減的4位元格雷編碼發射,能將SIR從未編碼單一脈衝的-15.0 dB提高到3.5 dB,在使用脈衝反相相減的四位元格雷編碼發射,更進一步將SIR提升至15.9 dB,此外分析人體呼吸引起的組織運動在脈衝反相相減中對HIFU抑制效果與超音波影像品質的影響也顯示可忽略不計。


    Ultrasound (US) imaging is often used for guidance of high-intensity focused ultrasound (HIFU) treatment due to its high temporal resolution and relatively low cost. However, real-time US monitoring is often hindered when the strong HIFU interference overwhelms the imaging echoes. In this study, a method of Golay-encoded pulse-inversion subtraction (PIS) is proposed to better visualize the change of imaged object during the HIFU treatment. It effectively eliminates HIFU interference patterns in real-time US imaging and also improves the signal-to-interference ratio (SIR). In PIS method, the received imaging echo of positive transmit is subtracted from that of negative transmit to cancel the HIFU component. When Golay excitation is adopted, imaging echo after PIS is further decoded by matched filters for pulse compression. The performance of the proposed method was evaluated through experiments with both PVA phantom and ex-vivo swine liver. Results show that 4-bit Golay transmit can improve the SIR from -15.0 dB of un-coded transmit to 3.5 dB. With PIS, the SIR of 4-bit Golay further increases to 15.9 dB. Moreover, the effect of tissue motion due to breathing are also shown to be negligible on HIFU suppression and decoded image resolution.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 超音波影像基本原理 1 1-2 脈衝反相技術 5 1-3 編碼波形原理 8 1-4 高能量聚焦超音波 10 1-5 HIFU干擾圖案消除與焦點定位之文獻探討 13 1-5-1 脈衝波干擾消除 13 1-5-2 連續波干擾消除 17 1-6 研究動機與目的 22 第二章 超音波影像導引之高能量聚焦超音波 23 2-1 脈衝反相相減 23 2-2 格雷編碼原理與特性 24 2-3 格雷編碼結合脈衝反相相減 27 第三章 研究方法 30 3-1 模擬設置 30 3-1-1 系統設定與回波信號擷取 30 3-1-2 模擬HIFU干擾信號 34 3-2 實驗設置 35 第四章 研究結果 41 4-1 模擬結果 41 4-2 實驗結果 43 4-2-1 PVA仿體實驗 43 4-2-2 Agar仿體實驗 45 4-2-3 豬肝仿體實驗 47 第五章 討論、結論與未來工作 51 5-1 討論 51 5-1-1 格雷編碼結合脈衝反相技術之信號干擾比 51 5-1-2 與HIC-PI相比之HIFU干擾抑制 52 5-1-3 干擾圖案之差異 54 5-1-4 組織移動情形 55 5-1-5 實現本技術於臨床影像系統之注意事項 58 5-2 結論與未來工作 60 參考文獻 63

    [1] 沈哲州,「醫用超音波影課程講義」,國立臺灣科技大學電機所,台北(2017)。
    [2] 彭俊凱,「雙頻諧波影像之軸向旁瓣消除與正交編碼波形」,碩士論文,國立臺灣科技大學,台北(2013)。
    [3] P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging,” Ultrason Imaging, Vol. 28, no. 3, pp. 129–143, 2006.
    [4] R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer's perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 52, no. 2, pp. 160-170, 2005.
    [5] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 52, no. 2, pp. 192-207, 2005.
    [6] C. C. Shen and Y. Y. Chiu, “Design of chirp excitation waveform for dual-frequency harmonic contrast detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 56, no. 10, pp. 2198-2206, 2009.
    [7] C. Leavens, R. Williams, F. S. Foster, P. N. Burns and M. D. Sherar, “Golay pulse encoding for microbubble contrast imaging in ultrasound,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 54, 62 no. 10, pp. 2082–2090, 2007.
    [8] Y. F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol., Vol. 2, no. 1, pp. 8-27, 2011.
    [9] H. Azzouz and J. J. M. C. H. Rosette, “HIFU: Local treatment of prostate cancer,” EAU-EBU Update Series, Vol. 4, no. 2, pp. 62-70, 2006.
    [10] S. Vaezy, R. Martin and L. Crum, “High intensity focused ultrasound: a method of hemostasis,” Echocardiography, Vol. 18, no. 4, pp. 309-315, 2001.
    [11] E. E. Konofagou, Y. S. Tung,J. Choi, T. Deffieux, B. Baseri and F. Vlachos, “Ultrasound-induced blood-brain barrier opening,” Curr. Pharm. Biotechnol., Vol. 13, no. 7, pp. 1332-1345, 2012.
    [12] P. Hyunchul, K. Eunjin, K. Jeongeun, R. Youngsuck and K. Jooyeon, “High-intensity focused ultrasound for the treatment of wrinkles and skin laxity in seven different facial areas,” Ann. Dermatol., Vol. 27, no. 6, pp. 688-693, 2015.
    [13] H. Furusawa, K. Namba, S. Thomsen, F. Akiyama, A. Bendet, C. Tanaka, Y. Yasuda and H. Nakahara, “Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness,” J. Am. Coll. Surg., Vol. 203, no. 1, pp. 54-63, 2006.
    [14] A. J. Ferenc, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med., Vol. 60, pp. 417-430, 2009.
    [15] E. J. Shin, B. Kang and J. H. Chang, “Real-time HIFU treatment monitoring using pulse inversion ultrasonic imaging,” Applied Sciences, Vol. 8, no. 11, pp. 2219, 2018.
    [16] S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol., Vol. 27, no. 1, pp. 33-42, 2001.
    [17] J. S. Jeong, J. M. Cannata and K. K. Shung, “Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer,” Phys. Med. Biol., Vol. 55, no. 7, pp. 1889-1902, 2010.
    [18] C. C. Wu, C. N. Chen, M. C. Ho, W. S. Chen and P. H. Lee, “Using the acoustic interference pattern to locate the focus of a high-intensity focused ultrasound (HIFU) transducer,” Ultrasound Med. Biol., Vol. 34, no. 1, pp. 137-146, 2008.
    [19] J. H. Song and J. H. Chang, “Correspondence - An effective pulse sequence for simultaneous HIFU insonation and monitoring,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 61, no. 9, pp. 1580-1587, 2014.
    [20] https://en.wikipedia.org/wiki/High-intensity_focused_ultrasound
    [21] R. Takagi, K. Goto, H. Jimbo, K. Matsuura, R. Iwasaki, S. Umemura and S. Yoshizawa, “Elimination of therapeutic ultrasound noise from pre-beamformed RF data in ultrasound imaging for ultrasound-guided high-intensity focused ultrasound treatment,” Japanese Journal of Applied Physics, Vol. 54, no. 7S1, 2015.
    [22] J. S. Jeong, J. H. Chang and K. K. Shungc, “Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: A preliminary study,” Ultrasonics, Vol. 52, no. 6, pp. 730-739, 2012.
    [23] A. Nowicki, W. Secomski, J. Litniewski, I. Trots and P. A. Lewin, “On the application of signal compression using Golay's codes sequences in ultrasound diagnostic,” Archives of Acoustics, Vol. 28, no. 4, pp. 313-324, 2003.
    [24] C. C. Shen, J. K. Peng, C. Wu and C. Y. Liu, “Orthogonal Golay excitation for range side lobe elimination in dual-frequency harmonic imaging,” Biomedical Signal Processing and Control, Vol. 18, pp. 386-393, 2015.
    [25] R. Y. Chiao and L. J. Thomas, “Synthetic transmit aperture imaging using orthogonal Golay coded excitation,” IEEE Ultrasonics Symposium, pp. 1677-1680, 2000.
    [26] 蕭聖諠,「利用通道域相位梯度差值於合成發射孔徑成像中估計超音波最佳聲速」,碩士論文,國立臺灣科技大學,台北(2018)。
    [27] R. Takagi, “Feasibility study on noise reduction using continuous wave response of therapeutic ultrasound for high intensity focused ultrasound treatment,” IEEE IUS, 2018
    [28] J. Seo, N. Koizumi, M. Mitsuishi and N. Sugita, “Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound,” Int. J. Med. Robot., Vol. 13, no. 4, 2017.
    [29] M. E. Frijlink, D. E. Goertz, N. de Jong, A. F. W. van der Steen, “Pulse inversion sequences for mechanically scanned transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 55, no. 10, pp. 2154-2163, 2008.

    QR CODE