簡易檢索 / 詳目顯示

研究生: 李至為
Chih-wei Lee
論文名稱: 合成含蒽之聚醯亞胺與聚醯胺及其性質研究
Synthesis and Characterization of Polyimides and Polyamides Based on Anthracene
指導教授: 陳燿騰
Yaw-terng Chen
口試委員: 江選雅
江選雅
陳志堅
陳志堅
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 聚醯亞胺聚醯胺
外文關鍵詞: polyimide, polyamide, anthracene
相關次數: 點閱:258下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以含蒽環之9,10-Bis(4-aminophenyl)Anthracene之剛硬二胺單體與多種芳香族二酸酐單體製備成一系列的聚醯亞胺,而其聚醯胺酸之固有黏度介於0.85至1.34 dL/g之間,經高溫熱閉環後可形成堅硬且透明的薄膜,抗張強度範圍在51~152 MPa之間,斷裂伸長率介於5.7~12.8%間。經動態熱機械分析儀量測它們具有相當高的玻璃轉移溫度,介於396~403℃;另外經由熱重量損失分析在氮氣與空氣下10%重量損失範圍分別在540~594℃和540~584℃之間。
另一方面,考慮到蒽環具有良好之穩定發光特性,以此含蒽之二胺單體與數種二酸單體製備成一系列的聚醯胺。這些聚醯胺都具有良好的溶解度,它們可以溶在NMP(N-methyl-2-pyrrolidone)、 DMAc (N,N’-Dimethylacetamide)與THF(Tetrahydrofuran)等之中,經溶液塗佈後可形成具韌性且透明的薄膜。這些薄膜的抗張強度範圍在54~137 MPa之間,而斷裂伸長率值為6.5~18.5%,其經動態熱機械分析儀量測它們具有高的玻璃轉移溫度範圍在318~350℃,而經由熱重量損失分析在氮氣與空氣下10%重量損失的範圍分別在528~546℃和
524~559℃之間。另外光學性質方面由紫外光/可見光分光譜儀可測得其最大吸收峰在290 nm左右,而利用螢光光譜儀以290 nm激發出波長為447 nm左右之發光特性,約為可見光範圍內之藍光。


A series of polyimides were synthesized by poly-
condensation of rigid diamine based on Anthracene, 9,10-bis -(4-aminophenyl)Anthracene, with various aromatic tetracarboxylic dianhydrides. The poly(amic acid)s had viscosities of 0.85~1.34dL/g, which can form a tough and transparent film after cyclodehydration. The films had tensile stress of 51~152 MPa, and elongation to breakage values of 5.7~12.8%. They had high glass transition temperatures of 396~403℃. In addition, the temperatures of the 10% weight loss in nitrogen and the air ranged on 540~594℃ and 540~584℃,respectively.
Considered that Anthracene exhibits a blue fluorescence under ultraviolet light, another series of polyamides were synthesized by polycondensation of the diamine based on Anthracene and various diacids. The polyamides which have inherent viscosities of 0.39~0.83dL/g were soluble in common solvent such as NMP(N-methyl-2-pyrrolidone)、DMAc(N,N’-Dimethylacetamide)、THF(Tetrahydrofuran and so on. This kind of polyamides can form transparent films with good toughness by solvent-casting. They had tensile stress of 54~137 MPa, and elongation to breakage values of 6.5~18.5%. They had high glass transition temperatures of 318~350℃. The temperatures of the 10% weight loss in nitrogen and the air ranged on 528~546℃ and 524~559℃,respectively. In addition, a series of aromatic polyamides have fluorescence emissions in the blue region.

摘要………………………………………………………………………I Abstract………………………………………………………………III 目錄……………………………………………………………………V Table索引……………………………………………………………VII Figure索引…………………………………………………………VIII 第一章 緒論……………………………………………………………1 1-1 聚醯亞胺簡介…………………………………………………1 1-1-1 聚醯亞胺之合成方式…………………………………3 1-1-2 聚醯亞胺之改質與應用………………………………7 1-2 聚醯胺簡介………………………………………………12 1-2-1 聚醯胺之改質與應用………………………………14 1-3 蒽環之應用…………………………………………………20 1-4 剛硬結構之文獻回顧…………………………………………22 1-5 擬進行之研究………………………………………………24 第二章 實驗……………………………………………………………26 2-1 實驗藥品………………………………………………………26 2-2 實驗藥品的純化………………………………………………29 2-3 合成單體………………………………………………………30 2-4 合成聚醯亞胺…………………………………………………32 2-5 合成聚醯胺……………………………………………………34 2-6 單體鑑定及聚合物的物性與化性分析………………………36 第三章 結果與討論……………………………………………………39 3-1 9,10-bis(4-aminophenyl)Anthracene……………………39 3-2 聚醯亞胺之合成………………………………………………40 3-2-1 化學環化……………………………………………40 3-2-2 熱環化………………………………………………42 3-3 聚醯胺之合成…………………………………………………43 3-4 聚合物之物性分析……………………………………………45 3-4-1 聚醯亞胺方面………………………………………45 3-4-2 聚醯胺方面…………………………………………48 第四章 結論……………………………………………………………52 聚醯亞胺方面………………………………………………………52 聚醯胺方面…………………………………………………………53 參考文獻………………………………………………………………55 作者簡介………………………………………………………………80 Table索引 Table 1 Solubility of Polyimide 2d’……………………………40 Table 2 The Inherent Viscosities of Poly(amic acid)………42 Table 3 Inherent Viscosities of Polyamides…………………44 Table 4 Solubility of Polyimides………………………………45 Table 5 Mechanical Properties of Polyimides Films…………46 Table 6 Thermal Properties of Polyimides……………………46 Table 7 Solubility of Polyamides………………………………48 Table 8 Mechanical Properties of Polyamides…………………49 Table 9 Thermal Properties of Polyimides………………………49 Table 10 Optical Properties of Polyamides……………………51 Figure索引 Figure 1. FTIR spectra of 9,10-bis(4-aminophenyl)- Anthracene……………………………………………60 Figure 2. MASS spectrum of 9,10-bis(4-aminophenyl)- Anthracene……………………………………………60 Figure 3. Single crystal structure for 9,10-bis(4-amino- phenyl)Anthracene…………………………………61 Figure 4. TGA curve of polyimide 2b in nitrogen atmosphere at a heating rate of 10℃/min…………………………61 Figure 5. TGA curve of polyimide 2c in nitrogen atmosphere at a heating rate of 10℃/min…………………………62 Figure 6. TGA curve of polyimide 2d in nitrogen atmosphere at a heating rate of 10℃/min…………………………62 Figure 7. TGA curve of polyimide 2e in nitrogen atmosphere at a heating rate of 10℃/min…………………………63 Figure 8. TGA curve of polyimide 2b in air atmosphere at a heating rate of 10℃/min……………………………63 Figure 9. TGA curve of polyimide 2c in air atmosphere at a heating rate of 10℃/min……………………………64 Figure 10. TGA curve of polyimide 2d in air atmosphere at a heating rate of 10℃/min……………………………64 Figure 11. TGA curve of polyimide 2e in air atmosphere at a heating rate of 10℃/min……………………………65 Figure 12. DSC thermogram of polyimide 2b in nitrogen atmosphere at rate of 20℃/min……………………65 Figure 13. DSC thermogram of polyimide 2c in nitrogen atmosphere at rate of 20℃/min……………………66 Figure 14. DSC thermogram of polyimide 2d in nitrogen atmosphere at rate of 20℃/min……………………66 Figure 15. DSC thermogram of polyimide 2e in nitrogen atmosphere at rate of 20℃/min……………………67 Figure 16. DMA curve for polyimide 2b in nitrogen atmosphere at a heating rate of 5℃/min………………………67 Figure 17. DMA curve for polyimide 2c in nitrogen atmosphere at a heating rate of 5℃/min………………………68 Figure 18. DMA curve for polyimide 2d in nitrogen atmosphere at a heating rate of 5℃/min………………………68 Figure 19. DMA curve for polyimide 2e in nitrogen atmosphere at a heating rate of 5℃/min………………………69 Figure 20. TGA curve of polyamide 3a in nitrogen atmosphere at a heating rate of 10℃/min………………………69 Figure 21. TGA curve of polyamide 3c in nitrogen atmosphere at a heating rate of 10℃/min………………………70 Figure 22. TGA curve of polyamide 3a in air atmosphere at a heating rate of 10℃/min……………………………70 Figure 23. TGA curve of polyamide 3c in air atmosphere at a heating rate of 10℃/min……………………………71 Figure 24. DSC thermogram of polyamide 3a in nitrogen atmosphere at rate of 20℃/min……………………71 Figure 25. DSC thermogram of polyamide 3c in nitrogen atmosphere at rate of 20℃/min……………………72 Figure 26. DMA curve for polyamide 3a in nitrogen atmosphere at a heating rate of 5℃/min………………………72 Figure 27. DMA curve for polyamide 3c in nitrogen atmosphere at a heating rate of 5℃/min………………………73 Figure 28. UV/Visible spectrum of Polyamide 3a in 10-4M NMP solution………………………………………………74 Figure 29. UV/Visible spectrum of Polyamide 3b in 10-4M NMP solution………………………………………………75 Figure 30. UV/Visible spectrum of Polyamide 3c in 10-4M NMP solution………………………………………………76 Figure 31. PL spectrum of polyamide 3a in 10-6M NMP solution………………………………………………77 Figure 32. PL spectrum of polyamide 3b in 10-6M NMP solution………………………………………………78 Figure 33. PL spectrum of polyamide 3c in 10-6M NMP solution………………………………………………79

[1] M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30, 1140 (1908)
[2] P. M. Heigenisher and N .J. Johnstin, ACS Symp.Ser132, American Chemical Society Washington, DC, 3 (1980)
[3] 林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊, 13, 29 (1999)
[4] H. D. Stenzenberger, Brit. Polym. J, 15 (1979)
[5] J. V. Crivello, J. Polym. Sci, 11, 1185 (1973)
[6] N. Bilow, A. L. Landis and L. J. Miller, U. S. Patent,18, 3845 (1974)
[7] R. A. Meyers, Am. Chem. Sci., Polym. Prepr.,10, 186 (1969)
[8] N. A .Adrova, M. I. Bessonov, L. A. Laius and A. P. Rudakov, Polyimide:A new class of thermally stable polymers(in Russian), Nauka, Leningrad1 (1968)
[9] 李伯毅,正型鹼性水溶液顯影感光性聚醯亞胺材料之研究,國立成功大學化工研究所碩士論文 (2002)
[10] H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman, J. S. Manello, C. McGoWan, R. A. Minns and R. Sahatjian Macromolecules, 18,1085 (1985)
[11] K. H. Choi, J. C. Jung, H. S. Kim, B. H. Sohn, W. C. Zin, M. Ree, Polymer, 45,1517 (2004)
[12] X. Guo, J. Fang, K. Tanaka, H. Kita, K. I. Okamoto, J Polym Sci Part A Polym Chem, 42,1432 (2004)
[13] S. Banerjee, M. K. Madhra, V. Kute, J Appl Polym Sci, 93, 821, (2004)
[14] B. Y. Myung, C. J. Ahn, T. H. Yoon, Polymer, 45,3185 (2004)
[15] C. Gao, X. Wu, G. Lv, M. Ding, L Gao, Macromolecules, 37,2754 (2004)
[16] Y. Yin, J. Fang, T. Watari, K. Tanaka, H. Kita, K. –I. Okamoto, J. Mater Chem, 14, 1062 (2004)
[17] 王其仁、謝玉英,配向膜材料及應用技術,工業材料 , 125 (2000)
[18] Wu Y.,Zhang Q.,Kanazawa A.,Shiono T.,Ikeda T.,Nagase Y.,Macromolecules, 32,3951 (1999)
[19] 江選雅,聚醯亞胺的合成及其在LCD上的應用,化工資訊月刊,13, 43 (1999)
[20] 林俊右,李育德,太巨科技公司,低熱膨脹係數聚醯亞胺共聚物之 合成與性質研究,第二十屆高分子研討會論文專輯, 99 (1997)
[21] 邱致銘,可溶性聚醯亞胺/二氧化矽奈米複合材料之合成與性質研 究,國立成功大學化工研究所碩士論文 (2003)
[22] 丁孟賢,何天白,聚亞醯胺新型材料,科學出版社 (1998)
[23] P. J. Perry, B. D. Wilson, Macromolecules, 26, 1503, 1993.
[24] Y. Takahashi, M. Iijima, Y. Oishi, M. A. Kakimoto and Y. Imai, Macromolecules, 24, 3543, 1991.
[25] Y. Oshi, M. A. Kakimoto and Y. Imai, Macromolecules, 21, 547, 1988.
[26] H. K. Reimschuessel, J. Polym. Sci, Macro. Rev., 12, 65, 1977.
[27] S. K. Gupta, D. Kunzru, A, Kumar and K. Agarwal, J. Appl . Polym. Sci., 28, 1626, 1983.
[28] H. J. Jeong, M. A. Kakimoto and Y. Imai, J. Polym. Sci., Polym. Chem, 29, 767,1991.
[29] A .L. CimeciogLu and R. A. Weiss, J. Polym. Sci, Polym. Chem., 30, 1051, 1992.
[30] C. P. Yang and J. H. Lin, J. Poym. Sci. Polym. Chem., 32, 423, 1994.
[31] C. P. Yang and W. T. Chen, Makromol.Chem.,194, 1595, 1993.
[32] V. V. Korshak, A. L. Rusanov, D. S. Tugishi and G. M. Cherkasova, Macromolecules, 5, 807, 1972.
[33] F. Akutsu, T. Kataoka, K. Naruchi, M. Miura and K. Nagakubo, Polymer, 28, 1787, 1987.
[34] Y. Imai, N. N. Malder and M. Kakimoto, J. Polym. Sci., Polym. Chem. Ed.,23,797,1985.
[35] J. Y. Jadhav, J. Preston and W. R. Wrigbaum, J. Polym. Sci, Polym.Chem.Ed., 23, 1175, 1989.
[36] Y. Delaviz, A. Gungor, J. E. McGrath and H. W. Gibson, Polymer, 34, 210, 1993.
[37] M. Takayznagi and T. Katayose, J. Polym. Sci., Polym. Chem. Ed., 19,1133,1981.
[38] 陳宏謨,化工技術,第一卷,第九期,87頁,民國82年。
[39] W. F. Hale, A. G. Farnham, R. N. Johnson and R. A. Clendining, J. Polym. Sci. Polym.Chem. Ed.,5, 2399, 1967.
[40] B. F. Malichenko, V. V. Sherikova, L. C. Chervgatsova, A. A. Kachan and G. I.Motryuk, Vysokomol. Soedin. Ser. B, 14, 423.
[41] S.V. Vinogradova and Ya. S. Vygodskii, Russ. Chem. Rev., 42, 551, 1974.
[42] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963,38,2042
[43] Lee Soon Park, Yoon Soo Han, Jin Sang Hwang, Sang Dae Kim, J. Polym. Sci. Polym.Chem.,38,3173,2000
[44] Ioakim K. Spiliopoulos and John A. Mikroyannidis, Macromolecules, 1998,31,522
[45] Ioakim K. Spiliopoulos and John A. Mikroyannidis, Macromolecules, 1998,31,515
[46] John A. Mikroyannidis, J. Polym. Sci. Polym.Chem., 1999,37,15
[47] Novikov, S. S. Khardin, A. P. Novako, I. A. Radchenko, S. S.,Vysokomol. Soedin. Ser. B,16,155(1974)
[48] Novikov, S. S. Khardin, A. P. Novako, I. A. Radchenko, S. S.,Vysokomol. Soedin. Ser. B,18,462(1976)
[49] Korshak, V. V. Novikov, S. S. Vinogradov, S. V. Khardin, A. P. Vygodskii, Y. S. Novako, I. A. Orlinson, B. S. Radchenko, S. S.,Vysokomol. Soedin. Ser. B,21,248(1979)
[50] Hsiao S. H. ,Lee C. T. ,Chern Y. T. ,J. Polym. Sci. Polym. Chem.,37,1619(1999)
[51] Hsiao S, H. ,Li C. T. ,Marcromolecules,31,7213(1998)
[52] Chern Y. T. ,Chung W. H. ,J. Polym. Sci. ,Polym. Chem. ,34,117(1996)
[53] Pixton M. R. ,Paul D. R. ,Polymer,36,3165(1995)
[54] T. Nakano et al., Jap. Pat., 61,195,125 (1986)

無法下載圖示 全文公開日期 2011/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE