簡易檢索 / 詳目顯示

研究生: 楊信宏
Hsin-Hung Yang
論文名稱: 量測資料篩選對射頻指紋特徵辨識率改善之研究
Research on RF Fingerprint Identification Rate Improvement with Measurement Data Selection
指導教授: 劉馨勤
Hsin-Chin Liu
口試委員: 黃紹華
Shaw-Hwa Hwang
林俊霖
Chun-Lin Lin
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 49
中文關鍵詞: 射頻指紋特徵資料篩選實驗量測
外文關鍵詞: measurement data, transmitter identification
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

訊號由於通訊設備其硬體製造過程中的微小差異而在實體層中所帶有之唯一特徵,即為射頻指紋特徵(Radio Frequency Fingerprint, RFF)。人們不僅可以利用其唯一且難以仿冒之特性,在通訊的各種資安問題之下得到保障,也讓科技發展拓展出更多的可能性。
然而,射頻指紋特徵卻會因為無線通道或個別接收端差異等等的實際訊號傳輸過程的變因而產生影響,進一步的降低其辨識率;因此,射頻指紋特徵的提取、消除通道對射頻指紋特徵之影響,抑或是提高射頻指紋特徵可攜性之相關研究近年來都十分受到關注。
本論文主要是利用網卡與軟體無線電設備(Universal Software Radio Peripheral, USRP)做為訊號傳送端與接收端進行實驗數據之量測,並且於接收封包內的特定符元中提取射頻指紋特徵,以完成後續辨識設備之目的;但如上個段落所述,在實際量測的環境之下存在各種會導致辨識結果下降的變因,而本論文將針對實驗量測誤差所造成的影響進行改善,藉由分析不同原始資料的分布以及特徵變化,並進一步對其進行篩選,盡可能移除因環境變化或是實驗量測誤差而產生訊號偏差的封包,從而提升最終射頻指紋特徵之辨識率。
訊號由於通訊設備其硬體製造過程中的微小差異而在實體層中所帶有之唯一特徵,即為射頻指紋特徵(Radio Frequency Fingerprint, RFF)。人們不僅可以利用其唯一且難以仿冒之特性,在通訊的各種資安問題之下得到保障,也讓科技發展拓展出更多的可能性。
然而,射頻指紋特徵卻會因為無線通道或個別接收端差異等等的實際訊號傳輸過程的變因而產生影響,進一步的降低其辨識率;因此,射頻指紋特徵的提取、消除通道對射頻指紋特徵之影響,抑或是提高射頻指紋特徵可攜性之相關研究近年來都十分受到關注。
本論文主要是利用網卡與軟體無線電設備(Universal Software Radio Peripheral, USRP)做為訊號傳送端與接收端進行實驗數據之量測,並且於接收封包內的特定符元中提取射頻指紋特徵,以完成後續辨識設備之目的;但如上個段落所述,在實際量測的環境之下存在各種會導致辨識結果下降的變因,而本論文將針對實驗量測誤差所造成的影響進行改善,藉由分析不同原始資料的分布以及特徵變化,並進一步對其進行篩選,盡可能移除因環境變化或是實驗量測誤差而產生訊號偏差的封包,從而提升最終射頻指紋特徵之辨識率。


Because of the slight difference in the hardware manufacturing process of the communication device, the communication signal brings unique feature in the physical layer, which is called the radio frequency fingerprint (RFF). Therefore, ¬we can take advantage of its unique and difficult-to-counterfeit feature to improve communication information security issues and expand new technological developments.
However, the features of the radio frequency fingerprint can be affected by the changes in the actual signal transmission process, such as various wireless channels or different receivers, which further reduces the RFF recognition rate.
Thus, the techniques including the extraction of the RFF features, the elimination of the channel influence to the RFF, enhancement of the RFF portability have attracted much attention recently.
This work uses wireless local area network adaptors and software radio equipment (Universal Software Radio Peripheral, USRP) as the signal transmitters and receivers to measure the experimental data. The RFF features are extracted from some specific symbols in the received packet within measurement data. The transmitters are identified based on the extracted RFF features.
There are various factors that will cause the degradation of identification rate under the actual measurement environment. This work improves the degradation caused by possible imperfection of experimental measurement by filtering unqualified communication packages based on the analysis of measurement raw data and the distribution of extracted features.
The experimental results validate the effectiveness of the data selection process as it improves the transmitter identification rate successfully.

摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 VIII 縮寫索引 IX 符號索引 XI 第1章 緒論 1 1.1研究動機 1 1.2 論文貢獻 1 1.3 章節概要 2 第2章 文獻探討與背景介紹 3 2.1 標準802.11a/g之規範 3 2.1.1 標準802.11a/g之調變與解調 3 2.1.2 標準802.11a/g之訊號組成 4 2.2 射頻指紋特徵之生成與研究發展 6 2.2.1 射頻指紋特徵之發展 6 2.2.2 基於穩態訊號之射頻指紋特徵 7 第3章 射頻指紋特徵之提取與資料分析 8 3.1射頻指紋特徵之提取 8 3.1.1短訓練序列之特徵(Short Training Sequence) 8 (A)粗略載波頻率偏移(Short Carrier Frequency Offset, SCFO) 9 3.1.2長訓練序列之特徵(Long Training Sequence) 10 (A)精細載波頻率偏移(Long Carrier Frequency Offset, LCFO) 10 (B)取樣頻率偏移(Sampling Frequency Offset, LSFO) 12 (C)誤差向量幅度(Error Vector Magnitude, EVM) 13 3.1.3 SIGNAL符元之特徵 15 (A)殘餘頻率偏移(Residual Carrier Frequency Offset, RCFO) 15 (B)取樣頻率偏移(Sampling Frequency Offset, SSFO) 15 (C)功率頻譜密度(Power Spectral Density, PSD) 16 3.2資料篩選 16 3.2.1 訊號雜訊比分析 17 3.2.2 資料篩選與辨識流程 19 第4章 實驗量測與結果分析 23 4.1實驗設備 23 4.2實驗環境與實驗方法 23 4.2.1 加性高斯白雜訊通道(Additive white Gaussian noise) 24 4.2.2 萊斯衰減通道(Rician fading channel) 25 4.2.3 瑞利衰減通道(Rayleigh fading channel) 26 4.3結果分析 27 第5章 結論與未來研究方向 31 參考文獻 32

[1] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, "Wireless device identification with radiometric signatures," in Proceedings of the 14th ACM international conference on Mobile computing and networking, 2008, pp. 116-127.
[2] "IEEE Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High Speed Physical Layer in the 5 GHz band," IEEE Std 802.11a-1999, pp. 1-102, 1999, doi: 10.1109/IEEESTD.1999.90606.
[3] Keysight Technologies, "Concepts of Orthogonal Frequency Division Multiplexing (OFDM) and 802.11 WLAN." Available: http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/ofdm_basicprinciplesoverview.htm.
[4] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, "Wireless Physical-Layer Identification: Modeling and Validation," IEEE Transactions on Information Forensics and Security, vol. 11, no. 9, pp. 2091-2106, 2016, doi: 10.1109/TIFS.2016.2552146.
[5] N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, "A Review of Radio Frequency Fingerprinting Techniques," IEEE Journal of Radio Frequency Identification, pp. 1-1, 2020, doi: 10.1109/JRFID.2020.2968369.
[6] Y. Shi and M. A. Jensen, "Improved Radiometric Identification of Wireless Devices Using MIMO Transmission," IEEE Transactions on Information Forensics and Security, vol. 6, no. 4, pp. 1346-1354, 2011, doi: 10.1109/TIFS.2011.2162949.
[7] H. Shafiee, B. Nourani, and M. Khoshgard, "Estimation and compensation of frequency offset in DAC/ADC clocks in OFDM systems," in 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), 20-24 June 2004, vol. 4, pp. 2397-2401 Vol.4.
[8] E. Sourour, H. El-Ghoroury, and D. McNeill, "Frequency offset estimation and correction in the IEEE 802.11a WLAN," in IEEE 60th Vehicular Technology Conference, 26-29 Sept. 2004, vol. 7, pp. 4923-4927 Vol. 7.
[9] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, "Optimum receiver design for wireless broad-band systems using OFDM. I," IEEE Transactions on Communications, vol. 47, no. 11, pp. 1668-1677, 1999, doi: 10.1109/26.803501.
[10] M. Speth, S. Fechtel, G. Fock, and H. Meyr, "Optimum receiver design for OFDM-based broadband transmission .II. A case study," IEEE Transactions on Communications, vol. 49, no. 4, pp. 571-578, 2001, doi: 10.1109/26.917759.
[11] T. Pollet, P. Spruyt, and M. Moeneclaey, "The BER performance of OFDM systems using non-synchronized sampling," in 1994 IEEE GLOBECOM. Communications: The Global Bridge, 28 Nov.-2 Dec. 1994, pp. 253-257 vol.1.
[12] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, "Design of a Hybrid RF Fingerprint Extraction and Device Classification Scheme," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 349-360, 2019.
[13] Ettus Research, "About USRP Bandwidths and Sampling Rates," 2016. Available: https://kb.ettus.com/About_USRP_Bandwidths_and_Sampling_Rates.

無法下載圖示 全文公開日期 2024/10/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE