簡易檢索 / 詳目顯示

研究生: 許松逸
Song-Yi Syu
論文名稱: 多層壓電圓盤及圓環複合等向性材料三維振動特性之理論解析、數值分析與實驗量測
Theoretical Analysis, Numerical Calculation and Experimental Measurement on Three-Dimensional Vibration Characteristics of Multilayer Piezoelectric Circular and Annular Plates with Isotropic Material
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 林師誠
Shih-Cherng Lin
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 464
中文關鍵詞: 薄板理論壓電陶瓷圓盤壓電陶瓷圓環雙層壓電陶瓷複合等向性材料共振頻率振動模態三維耦合振動電子斑點干涉術雷射都卜勒振動儀阻抗分析儀有限元素法超音波霧化器聲壓
外文關鍵詞: piezoelectric circular plate, piezoelectric annular plate, piezoelectric bimorph, nebulizer, sound pressure
相關次數: 點閱:261下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過理論分析及有限元素數值計算,探討壓電陶瓷圓盤及圓環在單層、雙層堆疊及雙層堆疊複合等向性材料於不同邊界條件的振動特性,雙層壓電陶瓷依極化方向不同分為串聯型及並聯型,並將各類型壓電陶瓷振動模態分為軸向、切向及徑向各別探討,以期對壓電元件之三維振動特性有完整的了解。本研究第二部分探討市售超音波霧化器之振動特性及霧化效果,利用理論解析及數值計算,設計並聯型雙層壓電圓環複合等向性材料於自由邊界下三維耦合特性的尺寸參數,並使用全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)、 雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)及阻抗分析儀三種實驗技術量測壓電圓環的振動特性,實驗結果再與理論解析、FEM數值計算進行比較,並利用 LDV 量測共振頻率及最大位移量,將其結果代入聲壓解析做計算,探討聲壓、振動特性及霧化效果的關係,本研究成果可在學術研究領域或工業界的實際應用中,提供單層與多層壓電陶瓷圓盤及圓環於各種邊界條件下的振動資訊。


    This thesis used on the theoretical analysis, finite element numerical calculation
    of piezoelectric circular and annular plates, which are including one-layer
    piezoelectric disk, two-layered piezoelectric plates and two-layered piezoelectric
    plates compounded with isotropic materials. Furthermore, multilayer piezoelectric
    component is composited of the same and opposite poling direction, and it has
    different vibration characteristics by series and parallel electrically connections. The transversal, extensional, and tangential vibration characteristics for piezoelectric circular and annular plates with different boundary conditions are studied on theoretical anaylsis and finite element method. The second part of this study investigated on the vibration characteristics used on nebulizer. Using theoretical analysis and numerical calculation to design dimensional parameters of three-dimensional coupling characteristics of two-layer piezoelectric annular plates compounded with isotropic materials under traction-free boundary conditions. In this study, three experimental techniques, including AF-ESPI, LDV, and impedance analyzer, are used to obtain the vibration characteristics of piezoelectric annular plates. The experimental results are compared with the FEM and theoretical solutions. In order to establish the relationship between sound pressure, vibration
    characteristics and atomization effect, the LDV experimental results of the maximum
    displacement and resonance frequency are used to calculate the sound pressure.

    中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 符號引所 第一章 緒論 1.1研究動機 1.2文獻回顧 1.3內容介紹 第二章 實驗原理、架設與壓電基本理論 2.1電子斑點干涉術 2.1.1面外振動量測 2.1.2面內振動量測 2.2阻抗分析儀 2.3雷射都卜勒振動儀 2.4壓電基本理論 第三章 單層壓電陶瓷圓盤及圓環振動特性分析 3.1壓電陶瓷振動分析理論推導 3.2單層壓電陶瓷振動特性理論分析 3.2.1簡介 3.2.2單層壓電陶瓷應力、電場與位移關係 3.2.3單層壓電陶瓷圓盤軸向振動特性理論分析 3.2.4單層壓電陶瓷圓環軸向振動特性理論分析 3.2.5單層壓電陶瓷圓盤切向振動特性理論分析 3.2.6單層壓電陶瓷圓環切向振動特性理論分析 3.2.7單層壓電陶瓷圓盤徑向振動特性理論分析 3.2.8單層壓電陶瓷圓環徑向振動特性理論分析 3.3單層壓電陶瓷圓盤及圓環振動特性數值分析與理論解析之比較 3.3.1試片規格及FEM數值分析設定介紹 3.3.2單層壓電陶瓷圓盤及圓環軸向振動數值分析與理論解析之比較 3.3.3單層壓電陶瓷圓盤及圓環面內(切向、徑向)振動數值分析與理論解析之比較 第四章 雙層壓電陶瓷圓盤及圓環振動特性分析 4.1雙層壓電陶瓷振動特性理論分析 4.1.1簡介 4.1.2雙層壓電陶瓷應力、電場與位移關係 4.1.3串聯型雙層壓電陶瓷圓盤軸向振動特性理論分析 4.1.4串聯型雙層壓電陶瓷圓環軸向振動特性理論分析 4.1.5串聯型與並聯型雙層壓電陶瓷圓盤切向振動特性理論分析 4.1.6串聯型與並聯型雙層壓電陶瓷圓環切向振動特性理論分析 4.1.7串聯型雙層壓電陶瓷圓盤徑向振動特性理論分析 4.1.8串聯型雙層壓電陶瓷圓環徑向振動特性理論分析 4.1.9並聯型雙層壓電陶瓷圓盤軸向振動特性理論分析 4.1.10並聯型雙層壓電陶瓷圓環軸向振動特性理論分析 4.1.11並聯型雙層壓電陶瓷圓盤徑向振動特性理論分析 4.1.12並聯型雙層壓電陶瓷圓環徑向振動特性理論分析 4.2雙層壓電陶瓷圓盤及圓環振動特性數值分析與理論解析之比較 4.2.1試片規格及有限元素數值分析設定介紹 4.2.2串聯型雙層壓電陶瓷圓盤及圓環軸向振動數值分析與理論解析之比較 4.2.3並聯型雙層壓電陶瓷圓盤及圓環軸向振動數值分析與理論解析之比較 4.2.4 並聯型雙層壓電陶瓷圓盤及圓環面內(切向、徑向)振動數值分析與理論解析之比較 4.2.5串聯型與並聯型雙層壓電陶瓷圓盤及圓環振動特性數值分析與理論解析之比較 第五章 雙層壓電陶瓷圓盤及圓環複合等向性材料振動特性分析 5.1雙層壓電陶瓷圓盤及圓環複合等向性材料振動特性理論分析 5.1.1 簡介 5.1.2 雙層壓電陶瓷複合等向性材料應力、電場與位移關係 5.1.3串聯型雙層壓電陶瓷圓盤複合等向性材料軸向振動特性理論分析 5.1.4串聯型雙層壓電陶瓷圓環複合等向性材料軸向振動特性理論分析 5.1.5串聯型與並聯型雙層壓電陶瓷圓盤複合等向性材料切向振動特性理論分析 5.1.6串聯型與並聯型雙層壓電陶瓷圓環複合等向性材料切向振動特性理論分析 5.1.7串聯型雙層壓電陶瓷圓盤複合等向性材料徑向振動特性理論分析 5.1.8串聯型雙層壓電陶瓷圓環複合等向性材料徑向振動特性理論分析 5.1.9並聯型雙層壓電陶瓷圓盤複合等向性材料軸向振動特性理論分析 5.1.10並聯型雙層壓電陶瓷圓環複合等向性材料軸向振動特性理論分析 5.1.11 並聯型雙層壓電陶瓷圓盤複合等向性材料徑向振動特性理論分析 5.1.12並聯型雙層壓電陶瓷圓環複合等向性材料徑向振動特性理論分析 5.2 雙層壓電陶瓷圓盤及圓環複合等向性材料振動特性數值分析、理論解析之比較 5.2.1 試片規格及FEM數值分析設定介紹 5.2.2串聯型雙層壓電陶瓷圓盤及圓環複合等向性材料軸向振動數值分析與理論解析之比較 5.2.3並聯型雙層壓電陶瓷圓盤及圓環複合等向性材料軸向振動數值分析與理論解析之比較 5.2.4 並聯型雙層壓電陶瓷圓盤及圓環複合等向性材料面內(切向、徑向)振動數值分析與理論解析之比較 5.2.5串聯型與並聯型雙層壓電陶瓷圓盤及圓環複合等向性材料振動特性數值分析與理論解析之比較 第六章 壓電陶瓷應用於超音波霧化器之振動分析與實驗量測 6.1 簡介 6.1.1 超音波霧化器模組簡介 6.2 超音波霧化器實驗量測 6.2.1 超音波霧化器之單層壓電陶瓷實驗量測及探討 6.2.2超音波霧化器之單層壓電陶瓷複合等向性材料實驗量測及探討 6.2.3超音波霧化器之單層壓電陶瓷複合非等大小等向性材料實驗量測及探討 6.2.4超音波霧化器模組實驗量測及探討 6.3 超音波霧化器模組之尺寸設計與實驗量測 6.3.1超音波霧化器模組之尺寸設計 6.3.2單層壓電陶瓷實驗量測及探討 6.3.3雙層壓電陶瓷實驗量測及探討 6.3.4雙層壓電陶瓷複合相等大小之等向性材料實驗量測及探討 6.3.5雙層壓電陶瓷複合非等大小之等向性材料實驗量測及探討 6.3.6聲壓分析與集中參數測量法 6.3.7結果討論 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
    [2] Rogacheva, N.N., The theory of piezoelectric shells and plates. CRC Press, USA,
    1994.
    [3] R. D. Mindlin, “High frequency vibrations of piezoelectric crystal plates,”
    International Journal of Solids and Structures, 8 (7), pp. 895-906, 1972.
    [4] Maugin, G.A. and Attou, D., “An asymptotic theory of thin piezoelectric plates,”
    The Quarterly Journal of Mechanics and Applied Mathematics, 43(3), pp. 347-362, 1989.
    [5] Gorman D.J., Vibration analysis of plates by the superposition method. World
    Scientific, 1999.
    [6] Karlash V.L., “Planar electroelastic vibrations of piezoceramic rectangular plate and half-disk,” International Applied Mechanics, 43(5), pp. 547-553, 2007.
    [7] Lin M.W., Abatan A.O. and Rogers C.A., “Application of commercial finite
    element codes for the analysis of induced strain-actuated structures,” Journal of
    Intelligent Material Systems and Structures, 5(6), pp. 869-875, 1994.
    [8] Kunkel, H.A., Locke, S. and Pikeroen, B., “Finite-element analysis of vibrational modes in piezoelectric ceramic disks,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(4), 316-328, 1990.
    [9] Huang, C. H. and Ma, C. C, “Vibration characteristics of composite piezoceramic plates at resonant frequencies: experiments and numerical calculations,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(4), 1147-1156, 2001.
    [10] Koyuncu B., “The investigation of high frequency vibration modes of PZT-4
    transducers using ESPI techniques with reference beam modulation,” Optics and Lasers in Engineering, 1(1), pp. 37-49, 1980.
    [11] Chang, M., “In-plane vibration displacement measurement using fiber-optical
    speckle interferometry,” Precision Engineering, 16(1), pp. 36-41, 1994.
    [12] Oswin J.R., Salter P.L., Santoyo F.M. and Tyrer J.R., “Electronic speckle pattern interferometric measurement of flextensional transducer vibration patterns: in air and water,” Journal of Sound and Vibration, 172(4), pp. 433-448, 1994.
    [13] Chang, S. H., Du, B. C. and Lin, J. F., “Electro-Elastic Modeling of Annular
    Piezoceramic Actuating Disk Transducers,” Journal of Intelligent Materials Systems and Structures, 10(5), pp. 410-421, 2000.
    [14] Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication
    Theory,” Journal of the Optical Society of America, 52(10), pp. 1123-1130, 1962
    [15] Butters, J.N. and Leendertz, J.A.,“Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.
    [16] Lkberg O. J. and Hgmoen K., “Use of modulated reference wave in electronic
    speckle pattern interferometry,” Journal of Physics, 9(E), pp. 847-851, 1976.
    [17] Slettemoen, G. A., “General Analysis of Fringe Contrast in Electronic Speckle
    Pattern Interferometry,”Optical Acta, 26(3), pp. 313-327, 1979.
    [18] Wykes C., “Use of electronic speckle pattern interferometry (ESPI) in the
    measurement of static and dynamic surface displacements,” Optical Engineering,
    21, pp. 400-406, 1982.
    [19] Malmo, J. T., Lkberg O. J. and Slettemoen, G. A., “Interferometric testing at very high temperatures by TV holography,” Experimental Mechanics, 28(3), pp. 315-321, 1988.
    [20] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time averaged electronic speckle pattern interferometry methods,” Applied Optics, 35(22), pp. 4502-4509, 1996.
    [21] 黃吉宏,馬劍清,應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題,國立台灣大學機械工程研究所博士論文,87 年 6 月。
    [22] 謝東明,馬劍清,應用電子斑點光學干涉術探討含缺陷平板之振動特性,國立台灣大學機械工程研究所碩士論文,1999 年 6 月。
    [23] 林憲陽,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立台灣大學機械工程研究所博士論文,91 年 6 月。
    [24] 黃育熙,馬劍清,壓電石英晶體之平板結構的動態特性研究,國立台灣大學機械工程研究所碩士論文,92 年 6 月。
    [25] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
    [26] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
    [27] Ma C. C., Lin H. Y., Lin Y. C. and Huang Y. H., “Experimental and numerical
    investigations on resonant characteristics of a single-layer piezoceramic plate
    and a cross-ply piezolaminated composite plate,” Journal of the Acoustical Society of America, 199(3), pp. 1476-1486, 2006.
    [28] 林育志,馬劍清,壓電元件於不同介質中的動態特性研究與實驗量測,國立台灣大學機械工程研究所博士論文,93 年 6 月。
    [29] 何祥瑋,馬劍清,壓電圓盤與壓電圓環共振特性的理論分析與實驗量測,國立台灣大學機械工程研究所碩士論文,94 年 6 月。
    [30] Huang, C. H., “Free Vibration Analysis of the Piezoceramic Bimorph with Theoretical and Experimental Investigation,” IEEE Transactions on Ultrasonics,
    Ferroelectrics and Frequency Control, 52(8), pp. 1393-1403, 2005.
    [31] 黃育熙,馬劍清,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論分析,國立台灣大學機械工程研究所博士論文,98年 10 月。
    [32] Hou W., Das B., Jiang Y., Quin S., Zheng X.I., Pi X., Yang J., Liu H.G., Zeng J. and Zeng Z.G., “Simulation of the Diaphragm Properties of a PZT-based Valveless Micropump,” IEEE Nano/Micro Engineered and Molecular Systems, 2008.
    [33] Barreras, F., Amaveda, H., and Lozano, A., “Transient high-frequency ultrasonic water atomization,” Experiments in Fluids, 33(3), pp. 405-413, 2002
    [34] Shen, S. C., Wang, Y. J. and Chen, Y. Y., “Design and fabrication of medical
    micro-nebulizer,” Sensors and Actuators A: Physical, 144(1), pp. 135-143, 2008
    [35] 胡方軍,趙淳生,微泵型壓電超聲波霧化器研究,南京航空航天大學航天宇航學院碩士論文,2013 年 3 月
    [36] Zhou Y.S. and Tiersten H.F., “On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports,” Journal of Applied Physics, 69(5), pp. 2862-2870, 1991.
    [37] Royer D., Dieulesaint E. and LyleElastic S.N., Waves in Solids: Generation,
    acousto-optic interaction, applications, Springer, 2000.
    [38] Andrushchenko V.A., Vovkodav I.F., Karlash V.L. and Ulitko A.F., “Coefficient
    of electromechanical coupling in piezoceramic disks,” International Applied Mechanics, 11(4), pp. 377-382, 1975.
    [39] Huang Y. H. and Chiang H. Y., “Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms,” Journal of Sound
    and Vibration, 371, pp. 210-226, 2016.

    QR CODE