簡易檢索 / 詳目顯示

研究生: 李照南
Jhao Nan Li
論文名稱: 高分散度銅觸媒催化甲烷氧化反應特性探討
Discussion on characteristics of methane oxidation reaction catalyzed by high dispersion copper catalyst
指導教授: 林昇佃
Shawn D. Lin
口試委員: 江志強
Jyh-Chiang Jiang
林弘萍
Hong-Ping Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 281
中文關鍵詞: 高分散度觸媒甲烷部分氧化
外文關鍵詞: high dispersion catalyst, partial oxidation of methane, Cu/ZnO/SiO2
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

甲烷部分氧化的產物對於工業發展來說十分重要,在此研究中,許多學者試圖將甲烷直接氧化成甲醛或甲醇,但由於低選擇率及產率,使得一直無法在業界加以發展及應用,其最主要的原因是甲醛及甲醇比甲烷更具反應性,它們非常容易在反應期間過度氧化成二氧化碳及水而形成甲烷完全氧化。本研究探討銅分散度對甲烷氧化的影響,並搭配不同反應條件進行測試,希望藉由條件的優化,突破工業界在甲烷部份氧化上的瓶頸。實驗結果顯示高分散度銅觸媒有較佳的部分氧化催化能力,隨後改變不同的進料比(M/O),在M/O = 0.5~25中,M/O = 7有最高的一氧化碳產率。改變觸媒氫氣還原條件並搭配
M/O = 7進行反應性測試,從結果得知以高溫及長持溫時間來還原觸媒會降低觸媒銅分散度並影響反應活性。由甲烷部分氧化的結果可得知部分氧化的產物都只在高溫才出現,而部分氧化產物的生成會導致水產率下降,故猜測水會誘導氧化性甲烷蒸汽重組生成氫氣及一氧化碳,進一步測試水共進料對反應的影響後,其結果顯示,水進料的加入雖會增加高溫處部分氧化產物產率但會提高部分氧化反應所需的溫度。在測試過不同M/O及加入水共進料後,改變進料氣體及觸媒重比例(CH4 WHSV)亦能使反應特性發生改變,測試結果顯示,高溫氫氣產率隨CH4 WHSV提高而上升,一氧化碳則是在低CH4 WHSV才會有比較高的產率。兩反應氣體的進樣數量及與活性點的親和力不同,透過改變反應氣體進樣順序,探討反應氣體吸附優先順序與產物生成的關係,測試結果顯示先進樣氧氣再進樣甲烷能在低溫順利產生甲醛。最後探討載體及活性金屬對催化甲烷部分氧化的影響,本研究以不同的載體進行測試,高的Si/Al載體能合成出銅分散度較高的觸媒並提升催化活性,而活性金屬的修飾則是將鋅及銅一起擔載在二氧化矽上,藉由鋅的添加,改變銅的分散度,最終結果呈現含浸5%鋅能將銅的分散度提升到最高。


The product of partial oxidation of methane is very important for industrial development. In this study, many scholars tried to directly oxidize methane to formaldehyde or methanol, but due to low selectivity and yield, it has been unable to develop and apply in the industry. The main reason for this is that formaldehyde and methanol are more reactive than methane, they are very easily over-oxidized to carbon dioxide and water during the reaction to form total oxidation of methane. In this study, the effect of copper dispersion on methane oxidation was investigated and tested with different reaction conditions. It is hoped that by optimizing the conditions, the bottleneck in the partial oxidation of methane in the industry will be broken. The experimental results show that the high dispersion copper catalyst has better partial oxidation catalytic ability, and then change different feed ratios (M/O), in M/O = 0.5~25, M/O = 7 has the highest carbon monoxide yield. Change the catalyst hydrogen reduction conditions and carry out the reactivity test with M/O = 7. From the results, it is known that reducing the catalyst with high temperature and long time will reduce the catalyst copper dispersion and affect the reactivity. From the results of partial oxidation of methane, it can be known that the partially oxidized products only appear at high temperatures, and the formation of partial oxidation products will lead to a decrease in the water yield. Therefore, it is speculated that water will induce oxidative steam reforming of methane to generate hydrogen and carbon monoxide, and further test the water. After further testing the effect of water co-feeding on the reaction, the results show that the addition of water feed increases the partial oxidation product yield at high temperature but increases the temperature required for the partial oxidation reaction. After testing different M/O and co-feeding with water, changing the ratio of feed gas and catalyst weight (CH4 WHSV) can also change the reaction characteristics. The test results show that hydrogen yield in high temperature increases with the increase of CH4 WHSV, and carbon monoxide has higher yield with low CH4 WHSV. The injection quantities of the two reactive gases and their affinity with the active sites are different. By changing the injection sequence of the reactive gases, discussed the relationship between reactive gas adsorption priority and product formation. The test results show that the first inject oxygen and then the methane can successfully generate formaldehyde at low temperature. Finally, the influence of supports and active metal on catalytic partial oxidation of methane was discussed. In this study, different supports were used to test. High Si/Al supports can synthesize catalysts with higher copper dispersion and improve catalytic activity. In the modification of active metal, zinc and copper are loading on silica together, and the dispersion of copper is changed by the addition of zinc. The final result shows that impregnation of 5% zinc can improve the dispersion of copper to the highest.

摘要 I Abstract III 致謝 V 圖目錄 XI 表目錄 XXIII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 甲烷部分氧化反應 2 1.2.2 觸媒系統 7 1.2.3 吸附機制[19] 17 1.2.4 進料CH4/O2比例對甲烷部分氧化的影響 20 1.2.5觸媒活性衰退的原因[19] 23 1.2.6 氧化性甲烷蒸汽重組 24 1.2.7 催化甲烷部分氧化的觸媒選擇 25 1.2.8 鋅修飾銅觸媒 26 1.2.9 Copper phyllosilicate 27 1.3研究目的 29 第2章 研究設備與方法 30 2.1 研究架構與方法 30 2.2 藥品與儀器 32 2.2.1 藥品 32 2.2.2 實驗氣體 33 2.2.3 儀器 33 2.3 觸媒製備 35 2.3.1 載體前處理 35 2.3.2 觸媒製備[62] 35 2.4 儀器及原理 36 2.4.1 X光繞射儀[40、64] 36 2.4.2 比表面積與孔隙測定儀[19、39、40、68] 41 2.4.3 程溫還原及N2O titration(N2O chemisorption) 53 2.4.4 場發式掃描電子顯微鏡[39、40、79] 62 2.4.5 穿透式電子顯微鏡[19、40] 63 2.4.6 熱重分析儀[79、80] 64 2.4.7 氣相層析儀[19、40] 65 2.4.8 X光吸收光譜分析(X-ray absorption spectroscopy, XAS) 69 2.4.9 感應耦合電漿光學發射光譜儀 71 2.5 反應參數計算 73 2.5.1 甲烷部分氧化 73 2.5.2 氧化性甲烷蒸汽重組反應 74 2.5.3 推算甲烷部分氧化反應活化能大小 75 第3章 結果與討論 76 3.1 矽膠載體的選擇 76 3.2 觸媒的物理及化學性質探討 82 3.2.1 XRD分析 82 3.2.2 銅分散度與還原條件探討 86 3.2.3 表面積及孔洞性質分析 94 3.2.4 觸媒表面微觀結構 97 3.2.5 X光吸收光譜分析 99 3.3 不同進料比及銅分散度對甲烷部分氧化的影響 100 3.3.1 不同氧分壓下銅擔載量對催化反應選擇率及產率之影響 100 3.3.2 以高分散度銅觸媒測試M/O比對甲烷的部分氧化的影響 112 3.3.3 在M/O = 7條件下觸媒前處理條件對反應性影響 120 3.4 水共進料對甲烷部分氧化的影響 129 3.4.1 水共進料在M/O = 7條件對POM反應之影響 129 3.4.2 在S/M = 2/3下M/O對氧化性甲烷蒸汽重組的影響 133 3.5 在M/O = 7下的延伸反應 138 3.5.1 在M/O = 7下不同CH4 WHSV之POM及OSRM反應性比較 138 3.6 觸媒活性點與反應氣體吸附順序對甲烷部分氧化的影響 145 3.6.1 氣體進料順序對反應的影響性 145 3.7 載體對銅觸媒的影響 149 3.7.1 觸媒物理及化學性質比較 150 3.7.1.1 XRD分析及觸媒表面微觀結構 150 3.7.1.2 Temperature programmed reduction(TPR) & N2O titration 152 3.7.1.3 表面積及孔洞性質分析 154 3.7.2 不同載體之銅觸媒反應性比較 155 3.8 鋅修飾銅觸媒 158 3.8.1 鋅修飾後觸媒的物理及化學性質 158 3.8.1.1 XRD分析及觸媒表面微觀結構 158 3.8.1.2 Temperature programmed reduction(TPR) & N2O titration 160 3.8.1.3 表面積及孔洞性質分析 161 3.8.2 鋅修飾後銅觸媒對反應性的影響 164 第4章 結論 168 參考文獻 169 第5章 附錄 182 附錄一 在M/O = 7, S/M = 2/3下改變前處理條件對不同鍛燒狀態觸媒的反應性影響 182 附錄二 在M/O = 7, S/M = 2/3下相異銅擔載量觸媒對反應選擇率及產率之影響 188 附錄三 在相同甲烷WHSV下比較POM, OSRM, SRM 193 附錄四 氫氣在銅表面的吸脫附性質[103] 195 附錄五 以氨水揮發法製備銅觸媒之物理及化學性質探討 196 附錄六 以顆粒狀二氧化矽合成高擔載量Cu/SiO2之性質探討 199 附錄七 ZSM-5相關觸媒合成 202 附錄八 Copper silica及Copper silicate之性質比較 207 附錄九 以鹼處理修飾二氧化矽載體 211 附錄十 銅鋅觸媒之HRTEM圖譜 216 附錄十一 X%Cu/SiO2-C TEM圖譜 218 附錄十二 Copper phyllosilicate對觸媒的影響 219 附錄十三 X%Cu/SiO2的表面積及孔洞性質分析 224

[1] R. Pitchai, K. Klier, “Partial oxidation of methane,” Eng. Sci., 28, 13-88, 2006.
[2] T.H. Nguyen, A. Łamacz, P. Beaunier, S. Czajkowska, M. Domanski, A. Krzton, T.V. Le, G.D. Mariadassou, “Partial oxidation of methane over bifunctional catalyst I. In situ formation of Ni0/La2O3 during temperature programmed POM reaction over LaNiO3 perovskite,” Appl. Catal. B, 152-153, 360-369, 2014.
[3] B.C. Enger, R. Lødeng, A. Holmen, “A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts,” Appl. Catal. A: Gen., 346, 1-27, 2008.
[4] Q. Zhang, D. He, Q. Zhu, “Recent progress in direct partial oxidation of methane to methanol,” J. Nat. Gas Chem., 12, 81-89, 2003.
[5] M.J. Brown, N.D. Parkyns, “Progress in the partial oxidtion of methane to methanol and formaldehyde,” Catal. Today, 8, 305-335, 1991.
[6] M. Ravi, M. Ranocchiari, J.A.V. Bokhoven, “The direct catalytic oxidation of methane to methanol—A critical assessment,” Angew. Chem. Int. Ed., 56, 16464-16483, 2017.
[7] U.E.S. Amjad, A. Vita, C. Galletti, L. Pino, S. Specchia, “Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts,” Ind. Eng. Chem. Res. 52, 15428-15436, 2013.
[8] S. Eriksson, S. Rojas, M. Boutonnet, J.L.G. Fierro, “Effect of Ce-doping on Rh/ZrO2 catalysts for partial oxidation of methane,” Appl. Catal. A: Gen., 326, 8-16, 2007.
[9] W.R. Grace, “Partial oxidation of methane to formaldehyde by means of molecular oxygen,” J. Catal., 109, 187-197, 1988.
[10] M.J. Wulfers, S. Teketel, B. Ipek, R. F. Lobo, “Conversion of methane to methanol on coppercontaining small-pore zeolites and zeotypes,” Chem. Commun., 51, 4447-4450, 2015.
[11] T. Zhu, M. F. Stephanopoulos, “Catalytic partial oxidation of methane to synthesis gas over Ni–CeO2,” Appl. Catal. A: Gen., 208, 403-417, 2001.
[12] T. Sheppard, H. Daly, A. Goguet, J.M. Thompson, “Improved efficiency for partial oxidation of methane by controlled copper deposition on surface-modified ZSM-5,” Chem. Cat. Chem., 8, 562-570, 2016.
[13] T. Nozaki, A. Hattori, K. Okazaki, “Partial oxidation of methane using a microscale non-equilibrium plasma reactor,” Catal. Today, 98, 607-616, 2004.
[14] V.D. Sokolovskii, N.J. Coville, A. Parmaliana, I. Eskendirov, M. Makoa, “Methane partial oxidation. Challenge and perspective,” Catal. Today,. 42, 191-195, 1998.
[15] T.A. Ngo, J. Kim, S.K. Kim, S.S. Kim, “Pyrolysis of soybean oil with H-ZSM5(Proton-exchange of Zeolite Socony Mobil #5) and MCM41(Mobil Composition of Matter No. 41) catalysts in a fixed-bed reactor,” Energy, 35, 2723-2728, 2010.
[16] S. Sang, F. Chang, Z. Liu, C. He, Y. He, L. Xu, “Difference of ZSM-5 zeolites synthesized with various templates,” Catal. Today, 93-95, 729-734, 2004.
[17] Y. Jiao, C. Jiang, Z. Yang, J. Zhang, “Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application,” Microporous Mesoporous Mater., 162, 152-158, 2012.
[18] A. Petushkov, S. Yoon, Y.S. Larsen, “Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity,”
Microporous Mesoporous Mater, 137, 92-100, 2011.
[19] 民國99年國立交通大學環境工程研究所劉凱碩士論文
[20] J. Yang, S. Yu, H. Hu, Y. Zhang, J. Lu, J. Wang, D. Yin, “Synthesis of ZSM-5 hierarchical microsphere-like particle by two stage varying
temperature crystallization without secondary template,” Chem. Eng. Commun., 166, 1083-1089, 2011.
[21] W.C. Yoo, X. Zhang, M. Tsapatsis, A. Stein, “Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes, Microporous Mesoporous Mater. 149, 147-157, 2012.
[22] B. Ma, Y. Huang, C. Zhu, C. Chen, X. Chen, M. Fan, D. Sun, “Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent
performance in antibacterial activity,” Mater. Sci. Eng. C, 62, 656-661, 2016.
[23] M. Cozzolino, M.D. Serio, R. Tesser, E. Santacesaria, “Grafting of titanium alkoxides on high-surface SiO2 support: An advanced
technique for the preparation of nanostructured TiO2/SiO2 catalysts,” Appl. Catal. A Gen., 325, 256-262, 2007.
[24] C.A. Fyfe, H. Strobl, G.T. Kokotailo, G.J. Kennedy, G.E. Barlow, “Ultra-high-resolution 29Si solid-state MAS NMR investigation of sorbate and temperature-induced changes in the lattice structure of zeolite ZSM-5,” J. Am. Chem. Soc., 110, 3373-3380, 1988.
[25] X.G. Lei, S. Jockusch, M.F. Ottaviani, N.J. Turro, “In situ EPR investigation of the addition of persistent benzyl radicals to acrylates on ZSM-5 zeolites. Direct spectroscopic detection of the initial steps in a supramolecular photopolymerization,” Photochem. Photobiol. Sci., 2, 1095-1100, 2003.
[26] F. Schmidt, M.R. Lohe, B. Büchner, F. Giordanino, F. Bonino,S. Kaskel, “Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants,” Microporous Mesoporous Mater., 165, 148-157, 2013.
[27] F.C. Meunier, D. Verboekend, J.P. Gilson, J.C. Groen, J.P. Ramírez, “Influence of crystal size and probe molecule on diffusion in hierarchical
ZSM-5 zeolites prepared by desilication,” Microporous Mesoporous Mater., 148, 115-121, 2012.
[28] N. Chu, J. Yang, C. Li, J. Cui, Q. Zhao, X. Yin, J. Lu, J. Wang, “An unusual hierarchical ZSM-5 microsphere with good catalytic performance
in methane dehydroaromatization,” Microporous Mesoporous Mater., 118, 169-175, 2009.
[29] L. Xu, S. Wu, J. Guan, H. Wang, Y. Ma, K. Song, H. Xu, H. Xing, C. Xu, Z. Wang, Q. Kan, “Synthesis, characterization of hierarchical ZSM-5 zeolite catalyst and its catalytic performance for phenol tert-butylation reaction,” Catal. Commun., 9, 1272-1276, 2008.
[30] J. Majewska, B. Michalkiewicz, “Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst,” Int. J. Hydrog. Energy, 41, 8668-8678, 2016.
[31] Y. Wang, A. Tuel, “Nanoporous zeolite single crystals: ZSM-5 nanoboxes with uniform intracrystalline hollow structures,” Microporous Mesoporous Mater., 113, 286-295, 2008.
[32] Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, “Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance,” J. Colloid Interface Sci., 361, 521-526, 2011.
[33] D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, A. Peral, “Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units,” J. Mater. Chem., 18, 4210-4218, 2008.
[34] C. Kalamaras, D. Palomas, R. Bos, A. Horton, M. Crimmin, K. Hellgardt, “Selective oxidation of methane to methanol over Cu- and
Fe-exchanged zeolites: The effect of Si/Al molar ratio, Catal. Lett, 146, 483-492, 2016.
[35] S. Sang, F. Chang, Z. Liu, C. He, Y. He, L. Xu, “Difference of ZSM-5 zeolites synthesized with various templates,” Catal. Today, 93-95, 729-734, 2004.
[36] J.H. Kim, M.J. Park, S.J. Kim, O.S. Joo, K.D. Jung, “DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5,” Appl. Catal. A: Gen. , 264, 37-41, 2004.
[37] Z. Wan, W. Wu, G. Li, C. Wang, H. Yang, D. Zhang, “Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5zeolite catalysts in methanol to gasoline conversion,” Appl. Catal. A: Gen., 523, 312-320, 2016.
[38] J. Wang, J.C. Groen, W. Yue, W. Zhou, M.O. Coppens, “Facile synthesis of ZSM-5 composites with hierarchical porosity,” J. Mater. Chem., 18, 468-474, 2008.
[39] 民國96年私立嘉南藥理科技大學環境工程與科學系許欣潔碩士論文
[40] 民國98年私立東海大學化學系劉康文碩士論文
[41] 民國96年國立交通大學環境工程研究所張成光碩士論文
[42] C.J. Gump, V.A. Tuan, R.D. Noble, J.L. Falconer, “Aromatic permeation through crystalline molecular sieve membranes,” Ind. Eng. Chem. Res., 40, 565-577, 2001.
[43] S.F. Parker, A.J. Kombanal, “How many molecules can fit in a Zeolite pore? Implications for the hydrocarbon pool mechanism of the
methanol-to-hydrocarbons process,” Catalysts, 11,1204-1214, 2021.
[44] K.T. Dinh, M.M. Sullivan, P. Serna, R.J. Meyer, M. Dincă, Y.R. Leshkov, “Viewpoint on the partial oxidation of methane to methanol using Cu- and Fe-exchanged zeolites,” ACS Cata., 8, 8306-8313, 2018.
[45] J. Zhu, D. Zhang, K.D. King, “Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses,” Fuel, 80,899-905, 2001.
[46] Q. Zhang, D. He, J. Li, B. Xu, Y. Liang, Q. Zhu, “Comparatively high yield methanol production from gas phase partial oxidation of methane,” Appl. Catal. A: Gen., 224, 201-207, 2002.
[47] L.V. Mattos, E.R.D. Oliveira, P.D. Resende, F.B. Noronha, F.B. Passos, “Partial oxidation of methane on Pt/Ce–ZrO2 catalysts,” Catal. Today, 77, 245-256, 2002.
[48] W. Cai, B. Zhang, Y. Li, Y. Xu, W. Shen, “Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst,” Catal. Commun., 8, 1588-1594, 2007.
[49] X. Hu, G. Lu, “Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission,” Int. J. Hydrog. Energy, 35, 7169-7176, 2010.
[50] M. Nurunnabi, B. Li, K. Kunimori, K. Suzuki, K.I. Fujimoto, K. Tomishige, “Performance of NiO–MgO solid solution-supported Pt catalysts in oxidative steam reforming of methane,” Appl. Catal. A: Gen., 292, 272-280, 2005.
[51] N. Miletić, U. Izquierdo, I. Obregón, K. Bizkarra, I.A. Telleria, L.V. Bario, P.L. Arias, “Oxidative steam reforming of methane over nickel
catalysts supported on Al2O3–CeO2–La2O3,” Catal. Sci. Technol., 5, 1704-1715, 2015.
[52] X. Cui, S.K. Kær, “Thermodynamic analysis of steam reforming and
oxidative steam reforming of propane and butane for hydrogen production,” Int. J. Hydrog. Energy, 43, 13009-13021, 2018.
[53] A.M.D. Silva, K.R.D. Souza, L.V. Mattos, G. Jacobsc, B.H. Davis, F.B. Noronha, “The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol,” Catal. Today, 164, 234-239, 2011.
[54] D. Kaddeche, A. Djaidja, A. Barama, “Partial oxidation of methane on co-precipitated Ni-Mg/Al catalysts modified with copper or iron,” Int. J. Hydrog. Energy, 42, 15002-15009, 2017.
[55] A.C. Ferreira, A.M. Ferraria, A.M.B.D. Rego, A.P. Gonc¸ alves, A.V. Girão, R. Correia, T.A. Gasche, J.B. Branco, “Partial oxidation of methane over bimetallic copper–cerium oxide catalysts,” J. Mol. Catal., 320, 47-55, 2010.
[56] R.K. Singha, A. Shukla, A. Yadav, L.N.S. Konathala, R. Bal, “Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane,” Appl. Catal. B: Environ., 202, 473-488, 2017.
[57] J. Kähler, N. Heuck, A. Wagner, A. Stranz,, E. Peiner,, A. Waag, “Sintering of copper particles for die attach,” IEEE Trans. Compon. Packag. Manuf. Technol., 2, 1587-1591, 2012.
[58] P. Tahay, Y. Khani, M. Jabari, F. Bahadoran, N. Safari, A. Zamanian, “Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation,” Int. J. Hydrog. Energy, 45, 9484-9495, 2020.
[59] P. Ai, M. Tan, P. Reubroycharoen, Y. Wang, X. Feng, G. Liu, G. Yang, N. Tsubaki, “Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production,” Catal. Sci. Technol., 8, 6441-6451, 2018.
[60] X. Wang, M. Chen, X. Chen, R. Lin, H. Zhu, C. Huang, W. Yang, Y. Tan, S. Wang, Z. Du, Y. Ding, “Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate,” J. Catal., 383, 254-263, 2020.
[61] 民國108年國立臺灣科技大學化學工程所劉宇涵碩士論文
[62] 民國109年國立臺灣科技大學化學工程所陳光裕碩士論文
[63] W. Di, J. Cheng, S. Tian, J. Li, J. Chen, Q. Sun, “Synthesis and characterization of supported copper phyllosilicatecatalysts for acetic ester hydrogenation to ethanol,” Appl. Catal. A Gen., 510, 244-259, 2016.
[64] 觸媒工作坊鄭淑芬老師上課講義
[65] D.J. Lim, N.A. Marks, M.R. Rowles, “Universal Scherrer equation for graphene fragments,” Carbon, 162, 475-480, 2020.
[66] 國立臺灣科技大學材料工程所姚栢文老師上課講義
[67] 維基百科
[68] 民國100年國立成功大學化學系陳彥文碩士論文
[69] 民國104年國立臺灣師範大學化學所曾國銘碩士論文
[70] E.D. Guerreiro, O.F. Gorriz, J.B. Rivarola, L.A. Arrua, “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation,” Appl. Catal. A Gen., 165, 259-271, 1997.
[71] F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna, “Metal dispersion and distribution in Pd-based PTA catalysts,” Catal. Commun., 8, 876-879, 2007.
[72] Z. Liu, J.P.H. Li, X. Qi, Y. Dai, Y. Yang, “Applying low-temperature titration for determination of metallic sites on active oxide
supported catalysts,” Catal. Sci. Technol., 9, 2008-2018, 2019.
[73] C. Rudolf, F.A. Ghaida, B. Dragoi, A. Ungureanu, A. Mehdi, E. Dumitriu, “An efficient route to prepare highly dispersed metallic copper nanoparticles on ordered mesoporous silica with outstanding activity
for hydrogenation reactions,” Catal. Sci. Technol., 5, 3735-3745, 2015.
[74] E.D. Guerreiro, O.F. Gorriz, G. Larsen, L.A. Arrúa, “Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation. A comparative study using different preparation techniques,” Appl. Catal. A Gen., 204, 33-48, 2000.
[75] J. Shan, H. Liu, K. Lu, S. Zhu, J. Li, J. Wang, W. Fan, “Identification of the dehydration active sites in glycerol hydrogenolysis to 1,2-propanediol over Cu/SiO2 catalysts,” J. Catal., 383, 13-23, 2020.
[76] E. Giamello, B. Fubini, P. Lauro, A. Bossi, “A microcalorimetric method for the evaluation of copper surface area in Cu-ZnO Catalyst,” J. Catal., 87, 443-451, 1984.
[77] A. Gervasini, S. Bennici, “Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR),” Appl. Catal. A Gen., 281, 199-205, 2005.
[78] Z. Chen, X. Zhao, S. Wei, D. Wang, X. Zhang, “The effect of supports on hydrogenation and water-tolerance of copper-based catalysts,” New J. Chem., 45, 9967-9974, 2021.
[79] 民國109年國立化學工程所鄒雅茹碩士論文
[80] 民國104年私立東海大學化學所何培碩碩士論文
[81] 師大X光吸收講義
[82] 民國96年國立中山大學物理研究所員鳳屏碩士論文
[83] 新竹同步輻射中心詹丁山講師上課講義
[84] Z.Q. Wang, Z.N., Xu, S.Y. Peng, M.J. Zhang, G. Lu, Q.S. Chen, Y. Chen, G.C. Guo, “High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation,” ACS Catal., 5, 4255-4259, 2015.
[85] V.L. Dagle, M.D. Flake, T.L. Lemmon, J.S. Lopez, L.K. Kovarik, R.A. Dagle, “Effect of the SiO2 support on the catalytic performance of Ag/ZrO2/SiO2 catalysts for the single-bed production of butadiene from ethanol,” Appl. Catal. B, 236, 576-587, 2018.
[86] S. Zhu, X. Gao, Y. Zhu, W. Fan, J. Wang, Y. Li, “A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation
hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol,” Catal. Sci. Technol., 5, 1169-1180, 2015.
[87] S. Wang, X. Li, Q. Yin, L. Zhu, Z. Luo, “Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation,” Catal. Commun., 12,1246-1250, 2011.
[88] A. Ungureanu, A. Chirieac, C. Ciotonea, I. Mazilu, C. Catrinescu, S. Petit, E. Marceau, S. Royer, E. Dumitriu, “Enhancement of the dispersion and catalytic performances of copper in the hydrogenation of cinnamaldehyde by incorporation of aluminium into mesoporous SBA-15 silica,” Appl. Catal. A Gen., 598, 117615, 2020.
[89] C.S. Chen, W.H. Cheng, S.S. Lin, “Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction,” Appl. Catal. A Gen., 257, 97-106, 2004.
[90] L. Kuterasinski, J. Podobinski, E. Madej, M.S. Utrata, D.R. Zbik, J. Datka, “Reduction and oxidation of Cu species in Cu-faujasites studied by IR Spectroscopy,” Molecules, 25, 4765, 2020.
[91] S. Hajduk, V.D.B.C. Dasireddy, B. Likozar, G. Drazic, Z.C. Orel, “COx-free hydrogen production via decomposition of ammonia over
Cu–Zn-based heterogeneous catalysts and their activity/stability,” Appl. Catal. B, 211, 57-67, 2017.
[92] E. Yuan, P. Ni, J. Xie, P. Jian, X. Hou, “Highly efficient dehydrogenation of 2,3-butanediol induced by metal−support interface over Cu-SiO2 catalysts,” ACS Sustainable Chem. Eng., 8, 15716-15731, 2020.
[93] X. Zhang, C.S.M. Lee, D.O. Hayward, D. Michael, P. Mingos, “Oscillatory behaviour observed in the rate of oxidation of methane over metal catalysts,” Catal. Today, 105, 283-294, 2005.
[94] E.A. Lashina, Z.S. Vinokurov, A.A. Saraev, V.V. Kaichev, “Self-sustained oscillations in oxidation of methane over palladium: Experimental study and mathematical modeling,” J. Chem. Phys., 157, 44703, 2022.
[95] J.M. Li, F.Y. Huang, W.Z. Weng, X.Q. Pei, C.R. Luo, H.Q. Lin, C.J. Huang, H.L. Wan, “Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas, Catal. Today, 131, 179-187, 2008.
[96] M. Machida, S. Ikeda, “Oscillation in low-temperature NO–H2–O2 reactions over Pt catalysts supported on NOx-adsorbing material, TiO2–ZrO2,” J. Catal., 227, 53-59, 2004.
[97] A.C. Chien, “Oscillating syngas production on NiO/YSZ catalyst
from methane oxidation,” RSC Adv., 10, 26693-26698, 2020.
[98] 民國95年國立交通大學環境工程所李文智碩士論文
[99] Z. Wang, X. Jiang, M. Pan, Y. Shi, “Nano-scale pore structure and its multi-fractal characteristics of tight sandstone by N2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, Ordos Basin, China,” Minerals, 10, 377, 2020.
[100] 比表面積與孔隙測定儀操作手冊
[101] 國立清華大學化學系楊家明奈米製作與量測專題
[102] L.C.A.V.D. Oetelaar, A. Partridge, S.L.G. Toussaint, C.F.J. Flipse, H.H. Brongersma, “A surface science study of model catalysts. Metal-support interactions in Cu/SiO2 model catalysts,” J. Phys. Chem. B, 102, 9541-9549, 1998.
[103] M.J. Sandoval, A.T. Bell, “Temperature-programmed desorption studies of the interactions of H2, CO, and CO2 with Cu/SiO2,” J. Catal., 144, 227-237, 1993.
[104] H. Li, Y. Cui, Y. Liu, L. Zhang, Q. Zhang, J. Zhang, “Highly efficient Ag-modified copper phyllosilicate nanotube:Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate,” J. Mater. Sci. Technol., 47, 29-37, 2020.
[105] W. Di, J. Cheng, S. Tian, J. Li, J. Chen, Q. Sun, “Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol,” Appl. Catal. A: Gen., 510, 244-259, 2016.
[106] X. Wang, S. Zhu, S. Wang, J. Wang, W. Fan, Y. Lv, “Ni nanoparticles entrapped in nickel phyllosilicate for selective
hydrogenation of guaiacol to 2-methoxycyclohexanol,” Appl. Catal. A: Gen., 568, 231-241, 2018.
[107] Z. Bian, S. Kawi, “Preparation, characterization and catalytic application of phyllosilicate: A review,” Catal. Today. 339, 3-23, 2020.
[108] F. Schmidt, C. Hoffmann, F. Giordanino, S. Bordiga, P. Simon,
W.C. Cabrera, S. Kaskel, “Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction,” J. Catal., 307, 238-245, 2013.
[109] P. Deshmukh, J. Bhatt, D. Peshwe, S. Pathak, “Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash,” Trans. Indian Inst. Met., 65, 63-70, 2012.
[110] F. Li, L. Wang, X. Han, Y. Cao, P. He, H. Li, “Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation
Method,” Int. J. Hydrog. Energy, 42, 2144-2456, 2017.
[111] S. Wang, X. Li, Q. Yin, L. Zhu, Z. Luo, “Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation,” Catal. Commun., 12, 1246-1250, 2011.
[112] J. Zheng, W. Zhu, C. Ma, Y. Hou, W. Zhang, Z. Wang, “Hydrogenolysis of glycerol to 1,2-propanediol on the high dispersed SBA-15 supported copper catalyst prepared by the ion-exchange method,” React. Kinet. Mech. Catal., 99, 455-462, 2010.

QR CODE