簡易檢索 / 詳目顯示

研究生: 鍾昕恩
Chung, Hsi-En
論文名稱: 碳點作為雙藥物載體結合化學動力療法應用於癌細胞治療
Carbon dots as dual drug carriers combined with chemodynamic therapy for cancer treatment
指導教授: 張家耀
Chang Jia-Yaw
口試委員: 何郡軒
Jinn-Hsuan Ho
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 83
中文關鍵詞: 碳點化學動力療法化學療法缺氧反應腫瘤微環境多功能協同治療
外文關鍵詞: Carbon dots, Chemodynamic, Chemotherapy, Hypoxia-responsive, Tumor Microenvironment, Multifunctional Synergistic Therapy
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微波輔助加熱合成法合成的銅氮摻雜碳點(Cu,N@CDs),利用其螢光(PLQY= 74%)以及低毒性等特性,作為生物顯影劑和藥物載體結合兩種抗癌藥物喜樹鹼(Camptothecin, CPT)以及替拉札名(Tirapazamine, TPZ)。將Thiol linker (TL)與CPT結合形成TLCPT,利用TL的羧酸根用EDC/NHS法與碳點結合,藉由碳點豐富的芳香結構與TPZ以π-π interaction之方式形成弱氫鍵,接下來將Hydrogenated lecithin (HL)與Cholesterol、Polyoxyethylene-40 stearate (SPEG-40)混和形成HCP733,將HCP733與結合兩種藥物之碳點混和以超聲波分散法形成具有雙層磷脂質結構的脂質體(LCuCCT)。
    LCuCCT的雙層磷脂質結構與細胞膜的結構相似能增加材料細胞內化的程度。由於癌細胞代謝產生過量的乳酸以及氫離子,使腫瘤細胞處在較低之酸鹼值(pH=5.5)。脂質體HL的部分在酸性環境會質子化並且變得不穩定,會於細胞內釋放結合藥物的碳點,碳點上的銅離子不只能夠消耗癌細胞內用來平衡自由基的穀胱甘肽(GSH),還能進行化學動力療法(CDT)產生自由基。除了CDT的療效外,產生的自由基還能夠破壞TL上的雙硫鍵,從而釋放出抗癌藥物CPT。酸性條件還能使碳點與TPZ間的弱氫鍵變得不穩定進而釋放藥物。此外,脂質體還有維持藥物活性以及防止碳點螢光焠滅的特性,進一步延長LCuCCT的療效於人體的穩定性。
    通過細胞實驗,證實本研究所使用的材料具有高生物相容性。多藥物和化學動力療法的協同治療導致大量的晚期細胞凋亡,並且在細胞螢光顯影實驗中也得到相同的結果。表明了LCuCCT能夠被細胞攝取,並且具有產生自由基、藥物釋放等治療癌症的功效。


    In this study, copper-nitrogen-doped carbon dots (Cu,N@CDs) were synthesized using the microwave-assisted heating synthesis method. These dots were employed as a biological imaging agent and drug carrier by leveraging their fluorescence (PLQY = 74%) and low toxicity. To create the drug carrier, a Thiol linker (TL) was combined with Camptothecin (CPT) to form TLCPT. The carboxylate of TL was then used to bind with carbon dots via the EDC/NHS method. Weak hydrogen bonds were formed between TLCPT and Tirapazamine (TPZ) through π-π interactions with the rich aromatic structure of carbon dots. Next, Hydrogenated lecithin (HL) was mixed with Cholesterol and Polyoxyethylene-40 stearate (SPEG-40) to create HCP733. HCP733 was then mixed with carbon dots combined with CPT and TPZ to form liposomes with a bilayer phospholipid structure (LCuCCT) using ultrasonic dispersion. The bilayer phospholipid structure of LCuCCT resembled the cell membrane, enhancing internalization by the target cells.
    The acidic environment of tumor cells (pH=5.5) due to the excess lactic acid and hydrogen ions resulting from their metabolism plays a critical role in the drug release mechanism. In this acidic environment, liposome HL becomes protonated and unstable, leading to the release of drug-bound carbon dots inside the cells. The copper ions on the carbon dots serve a dual function: consuming glutathione (GSH) in cancer cells to balance free radicals and generating free radicals through chemodynamic therapy (CDT). Additionally, the free radicals generated break down the disulfide bond on TL, releasing the anticancer drug CPT. The acidic conditions also destabilize the weak hydrogen bonds between carbon dots and TPZ, thereby releasing the drug.
    Furthermore, liposomes maintain drug activity and prevent carbon dot fluorescence quenching, thus extending the curative effect of LCuCCT and ensuring its stability in the biological environment. Cell experiments have demonstrated the high biocompatibility of the materials used in this study. The synergistic treatment of multidrug and chemodynamic therapy resulted in a significant increase in late apoptosis, as confirmed by PI-Annexin flow cytometry experiments. The results indicate that LCuCCT can be effectively taken up by cells and has the ability to generate free radicals and release drugs to treat cancer cells. As a result, the designed LCuCCT exhibited outstanding therapeutic benefits for image-guided cancer therapy.

    摘要 II Abstract III 總目錄 V 圖目錄 VIII 第一章、緒論 1 1.1前言 1 1.2研究動機與內容 2 第二章、理論基礎與文獻回顧 3 2.1碳點 3 2.1.1碳點之起源與發展 3 2.1.2 碳點之光學性質 3 2.2 碳點之合成與發展 5 2.2.1 碳點之合成方法 5 2.2.2 異原子摻雜之碳點 9 2.3 化學動力學療法聯合癌症治療 10 2.3.1化學動力療法原理與機制 10 2.3.2化學動力學療法結合碳點 14 2.4 刺激響應性藥物傳送系統(S.D.D.S) 15 2.4.1 pH響應DDS 16 2.4.2 活性氧響應性琉縮酮鍵結 19 2.5脂質體藥物封裝系統(N.D.D.S) 20 2.5.1脂質體 20 2.5.2脂質體之合成與製備 22 2.5.3脂質體藥物封裝系統 22 2.5.4 pH敏感脂質體應用於藥物封裝系統 23 2.6雙藥物釋放 24 2.6.1 同步治療 25 2.6.2 序貫療法 26 第三章、實驗儀器與方法 28 3.1 實驗藥品 28 3.2 實驗儀器 29 3.3 實驗步驟 30 3.3.1 Cu、N 共摻雜藍色碳點之合成 30 3.3.2 活性氧響應性硫縮酮(Thioketal linker, TL)之合成 30 3.3.3 活性氧響應性藥物(TL-CPT)之合成 31 3.3.4 搭載CPT之碳點(CPT-Cu,N@CD)合成 31 3.3.5 搭載TPZ之碳點(TPZ-Cu,N@CD)合成 32 3.3.6 搭載雙藥物CPT/TPZ之碳點(TPZ/CPT-Cu,N@CD)合成 32 3.3.7 HCP733脂質體包覆奈米複合物之合成 32 3.4 化學動力檢測 33 3.4.1 以TMB做氫氧自由基檢測試劑 33 3.4.2 以電子順磁共振光譜(EPR)分析碳點產生氫氧自由基的能力 33 3.5 奈米複合物之消耗GSH之能力 33 3.5.1 以DTNB做檢測試劑 33 3.6 奈米複合物之藥物釋放能力 34 3.7 細胞培養與細胞實驗 34 3.7.1 磷酸鹽緩衝液(PBS)之配製 34 3.7.2 培養基(medium)之配製 34 3.7.3 解凍細胞 (Cells Defrost) 35 3.7.4 繼代細胞 (Cells Culture) 35 3.7.5 細胞計數 (Cells Counting) 36 3.7.6 冷凍細胞 (Cells Cryopreservation) 36 3.7.7 細胞體外之材料毒性測試 37 3.7.8 細胞體外之化學動力與藥物傳送治療 37 3.7.9 細胞攝取之情形 37 3.7.10 化學動力檢測螢光顯影試片製作 38 3.7.11 碘化丙啶(PI)細胞染色試驗 39 3.7.12 流式細胞儀 39 第四章、結果與討論 41 4.1 LCuCCT之實驗介紹 41 4.2 LCuCCT製備與鑑定 43 4.2.1 Cu,N@CD之鑑定與分析 43 4.2.2 TLCPT活性氧響應性藥物之製備與鑑定 46 4.2.3 LCuCCT之製備與鑑定 47 4.2.4 CuCCT 消耗穀胱甘肽(GSH)之能力與分析 52 4.2.5 CuCCT奈米複合物之化學動力療法分析 53 4.2.6 LCuCCT 奈米複合物之藥物加載量與釋放分析 55 4.2.7 LCuCCT 化學穩定性之檢測 57 4.2.8 LCuCCT 之生物相容性檢測 58 4.2.9 LCuCCT之療效測試 61 4.2.10 TPZ/CPT-Cu,N@CD之細胞顯影應用 63 第五章、結論與未來展望 69 5.1結論 69 5.2未來展望 70 參考文獻 71

    1 MILLER, Kimberly D., et al. Cancer treatment and survivorship statistics, 2016. CA: a cancer journal for clinicians, 2016, 66 (4): 271-289.
    2 XU, Xiaoyou, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 2004, 126 (40): 12736.
    3 SUN, Ya-Ping, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006, 128 (24): 7756.
    4 RAGAZZON, Giulio, et al. Optical processes in carbon nanocolloids. Chem, 2021, 7 (3): 606.
    5 ZHOU, Jigang, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society, 2007, 129 (4): 744-745.
    6 LI, Haitao, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49 (2): 605.
    7 LI, Jia-Yu, et al. One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir, 2017, 33 (4): 1043.
    8 DE MEDEIROS, Tayline V., et al. Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 2019, 7 (24): 7175.
    9 MANIOUDAKIS, John, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots. Journal of Materials Chemistry C, 2019, 7 (4): 853.
    10 OMER, Khalid M.; HASSAN, Aso Q. Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection. Microchimica Acta, 2017, 184: 2063.
    11 YAN, Fanyong, et al. Surface modification and chemical functionalization of carbon dots: a review. Microchimica Acta, 2018, 185: 1.
    12 ZHANG, Yongqiang, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale, 2016, 8 (33): 15281.
    13 ZHAO, Jing, et al. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New Journal of Chemistry, 2019, 43, (16), 6332.
    14 WANG, Xianwen, et al. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today, 2020, 35, 100946.
    15 CAO, Shuhua, et al. A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55, (86), 12956.
    16 MA, Baojin, et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2018, 141, (2), 849.
    17 ZHANG, Zhan, et al. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coordination Chemistry Reviews, 2019, 399, 213022.
    18 WANG, Xianwen; CHENG, Liang. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews, 2020, 419, 213393.
    19 XUE, Ting, et al. Doxorubicin-loaded nanoscale metal–organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomaterials Science, 2019, 7, 11, 4615.
    20 WANG, Shuaifei, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. Acs Nano, 2018, 12, (12), 12380.
    21 XU, Jinxia, et al. Carbon dots as a promising therapeutic approach for combating cancer. Bioorganic & Medicinal Chemistry, 2022, 116987.
    22 LI, Jun, et al. Multifunctional carbon quantum dots as a theranostic nanomedicine for fluorescence imaging-guided glutathione depletion to improve chemodynamic therapy. Journal of Colloid and Interface Science, 2022, 606, 1219.
    23 YIN, Qi, et al. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Advanced drug delivery reviews, 2013, 65, (13-14), 1699.

    24 DU, Jin‐Zhi, et al. A tumor‐acidity‐activated charge‐conversional nanogel as an intelligent vehicle for promoted tumoral‐cell uptake and drug delivery. Angewandte Chemie, 2010, 122, (21), 3703.
    25 LU, Yue, et al. Bioresponsive materials. Nature Reviews Materials, 2016, 2, (1), 1.
    26 JIN, Yun-Huan, et al. pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2012, 94, 184.
    27 MAJEDI, Fatemeh Sadat, et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on a Chip, 2013, 13, (2), 204.
    28 TANG, Rupei, et al. Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. Journal of controlled release, 2011, 151, (1), 18.
    29 KIEVIT, Forrest M., et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. Journal of controlled release, 2011, 152, (1), 76.
    30 WANG, Feng, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS nano, 2011, 5, (5), 3679.
    31 KIM, Jee Seon, et al. ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. Journal of Industrial and Engineering Chemistry, 2015, 21, 1137.
    32 SIMÕES, Sérgio, et al. On the formulation of pH-sensitive liposomes with long circulation times. Advanced drug delivery reviews, 2004, 56, (7), 947.
    33 GAO, Quan, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Advanced Drug Delivery Reviews, 2022, 114445.
    34 MOKHTARI, Reza Bayat, et al. Combination therapy in combating cancer. Oncotarget, 2017, 8, (23), 38022.
    35 YANG, Changwon, et al. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biology, 2021, 47, 102144.
    36 KERAMYDAS, Dimitrios, et al. Investigation of the health effects on workers exposed to respirable crystalline silica during outdoor and underground construction projects. Experimental and Therapeutic Medicine, 2020, 20, (2), 882.
    37 ZHAO, Meng-Dan, et al. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. International journal of nanomedicine, 2019, 9453.
    38 WANG, Li-Hui, et al. Suppression of NF-κB signaling and P-glycoprotein function by gambogic acid synergistically potentiates adriamycin-induced apoptosis in lung cancer. Current cancer drug targets, 2014, 14, (1), 91.
    39 BAHMAN, Abdulmajeed A., et al. Sequence‑dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. International journal of molecular medicine, 2018, 42, (3), 1695.
    40 HSU, Hsien-Yeh, et al. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer letters, 2018, 432, 112.

    無法下載圖示 全文公開日期 2028/08/24 (校內網路)
    全文公開日期 2028/08/24 (校外網路)
    全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE