簡易檢索 / 詳目顯示

研究生: 馮法納
Fofana Muhammed S.
論文名稱: 電漿電解質氧化軟性火花區及電弧區在AZ91D鎂合金鍍膜之行為分析
Soft Sparking and Arcing Regime Behaviors of Plasma Electrolytic Oxidation (PEO) Coatings on AZ91D Magnesium Alloy
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 122
中文關鍵詞: 鎂合金電漿電解質氧化電弧放電軟性火花區電流比電荷比
外文關鍵詞: Magnesium, Plasma electrolytic oxidation, arcing regime, soft sparking regime, current ratio, charge ratio
相關次數: 點閱:348下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文在雙極脈衝模式下研究了AZ91D 鎂合金在鋁酸鹽基電解質中電漿電解質
氧化 (PEO)的軟性火花區和電弧區行為。
在PEO 研究中,氧化層生長動力學對氧化物的形貌、特性具有顯著影響。至今
為止,軟性火花和電弧區特性行為的研究少之又少,本研究中我們使用可能影
響軟性火花和電弧發生的的參數進行研究。舉例來說像是電流比IR (IR=I+/I−)
代表陽極氧化與陰極還原電流的比率,以及電荷比CR (CR=Q+/Q−) 代表一個脈
衝週期內陽極氧化與陰極還原電荷的比率。在定電流模式下,藉由調整負電流
使IR範圍= [0.63~2.40] 以及陰極工作週期使CR= [0.65~2.00] 。
實驗結果表明IR<1.0 時形成的塗層在陽極時的電阻不高,這可歸因於在負
脈衝期間氧化物被氫還原,相較於其他團隊的結果,我們發現不論CR值如何,
在IR<1.0 參數中的塗層中發生軟性火花現象,其原因為較大的負電流與較長的
負極脈衝波形影響氧擴散機制與電漿反應型態,有助於用較軟的火花取代反應
較為劇烈的強火花。進而比較發現當IR<1.0,CR<1.0 時,相較IR<1.0,CR>1.0 軟
性火花發生得更早,其原因為CR<1.0 時氫的總含量多於CR>1.0,而氫會破壞膜
層的絕緣性,故提早發生軟火花現象。另一方面在IR>1.0,CR>1.0 的塗層中觀
察到電弧放電增長現象;IR>1.0;CR<1.0 時,塗層生長的電壓頻繁且急劇地下
降,出現軟性火花、微放電、聲音光線驟減現象。
在軟性火花狀態下形成的膜層的微觀結構顯示出均勻的塗層,可以觀察到
氧化層向內生長的行為;而在電弧狀態下形成的膜層明顯看到一些放電通道、
孔洞、裂紋等,在XRD 中可以分析出試片具有高的結晶度,故機械性質如納米
硬度、彈性模數都會比經由軟性火花狀態下的膜層性質好。
在本研究中運用Mott-Schottky 評估所有塗層都具有n 型半導體行為。另外
由於氧化物膜層中的氫引起的氧空缺,我們觀察到軟火花形成的塗層的載子濃
度遠高於電弧放電塗層。結果亦與氧化物被氫氣還原現象一致。


This study investigated the soft sparking and arcing regime behaviors of plasma
electrolytic oxidation (PEO) on AZ91D magnesium alloys in aluminate-based
electrolyte under constant current DC bipolar pulse mode. In PEO, the coating growth
dynamics has a significant influence on the oxide coatings and characteristics. Both
the soft sparking and arcing regime behavior of PEO coatings on Mg alloys are rarely
studied. In this work, we performed experiments by considering factors that may
influence the occurrence of soft sparking and/or arcing regime. We investigated the
effect of electrical parameters like the current ratio parameter (IR) representing ratio
of anodic oxidation to cathodic reduction current ratio (IR = I+/I−) and the electrical
charge ratio parameter (CR) representing the ratio of the anodic oxidation to cathodic
reduction charge quantity over one current pulsed period (CR = Q+/Q−) under
constant current density on the occurrence of the soft sparking and arc regime. Several
IR values ranging from [0.63~2.40] were selected by only varying the cathodic current
over a fixed anodic current. Similarly several CR values ranging from [0.65~2.00]
were selected by only varying the negative current pulses over a fixed anodic current
pulse.
It seems that the oxide coatings formed at IR<1.0 is not highly resistive to the anodic
current which is likely attributed to the oxygen being reduced by hydrogen during the
negative pulse. As a result, contrary to reports from various PEO studies, we found
out that soft sparking growth phenomenon occurs in coatings at IR<1.0 due to the
larger negative current and longer duration of cathodic pulses that influences the
oxygen diffusion mechanism and plasma reaction characteristics contributing to
replacing the strong sparks with softer ones irrespective of the various selected
CR values. It is found that soft sparking regime occurred earlier when (IR <1.0;
CR<1.0) than when (IR<1.0; CR>1.0). It was observed that at a constant IR value,
varying the CR values as a result of adjusting the cathodic polarization influences the
soft sparking regime occurrence time. On the other hand, an arcing regime growth
phenomenon was observed in coatings at IR>1.0 irrespective of the various selected
CR values. The obtained results shows that the coating growth was distinguished by
frequent sharp sudden brief drops in the voltage followed by soft sparks,
II
microdischarges, decreased in voltage, reduced acoustics and light emissions when
(IR>1.0; CR<1.0).
Comparatively, the microstructure of ceramic oxide coatings formed at soft sparking
regime shows uniform and porous coatings. The coatings can be observed to grow
inwards and the outside layer appears smooth and plain. Arcing regime coatings on
the other hand were distinguished by visible discharge channels, holes, microcracks
and micro-pores. The higher intensity and sharpness of the peaks from the XRD
results shows that coatings at arcing regime demonstrate better degree of crystallinity.
As a result, nano-hardness and elastic modulus of the ceramic oxide coatings were
found to be comparatively higher with arcing regime coatings and reduces with soft
sparking regime coatings.
The Mott-Schottky evaluation results exhibited an n-type semiconducting behaviors
for all the ceramic oxide coatings in this study. As a result of oxygen deficiency
vacancy caused by hydrogen in the oxide film layer, it was observed that donor
concentration for soft regime coatings were much higher than the arcing regime
coatings. The oxide coating characteristics and corrosion resistance performance
could be improved by altering working parameters such as applied the current during
PEO.

TABLE OF CONTENTS Abstract ......................................................................................................................... I 摘要.............................................................................................................................. III ACKNOWLEDGEMENT ......................................................................................... IV LIST OF FIGURES ................................................................................................ VIII LIST OF TABLES .................................................................................................. XIV CHAPTER 1 ................................................................................................................. 1 1.1 Introduction ..................................................................................................... 1 1.2 Research Objectives ........................................................................................ 2 CHAPTER 2 ................................................................................................................. 5 LITERATURE REVIEW ........................................................................................... 5 2.1 Magnesium Alloy ................................................................................................. 5 2.1.1 History and Properties of Magnesium alloys ................................................ 5 2.1.2 Corrosion Behavior of Magnesium and its alloys ......................................... 7 2.2 Plasma Electrolytic Oxidation (PEO) .................................................................. 8 2.2.1 History of the PEO Process ........................................................................... 8 2.2.2 Technology of PEO as a Coating Technique ................................................. 8 2.2.3 PEO Ceramic Oxide Coating Formation ..................................................... 10 2.2.4 PEO Processing Parameters ......................................................................... 11 2.2.5 PEO Process Regimes Coating Growth ....................................................... 15 2.2.6 PEO Oxide Semiconducting Property: Mott–Schottky Theory .................. 25 CHAPTER 3 ............................................................................................................... 27 EXPERIMENTAL PROCEDURES ........................................................................ 27 3.1 MATERIALS ..................................................................................................... 27 3.2 ELECTROLYTES ............................................................................................. 27 VI 3.3 Plasma Electrolytic Oxidation (PEO) Treatment ............................................... 28 3.4 Electrical Parameters .......................................................................................... 29 3.5 COATINGS CHARACTERIZATION METHODS .......................................... 30 3.5.1 X-Ray Diffraction (XRD) ............................................................................ 31 3.5.2 Scanning Electron Microcopy (SEM) ......................................................... 31 3.5.3 Electrochemical Corrosion Test .................................................................. 31 3.5.4 Mott-Schottky Test ...................................................................................... 32 3.5.4 Hardness Test .............................................................................................. 33 3.5.5 Roughness Test ............................................................................................ 33 Chapter 4 .................................................................................................................... 34 Results and Discussions ............................................................................................. 34 4.1 Soft sparking and arcing regime oxide coating growth behavior at a constant ??>1.0. ..................................................................................................................... 34 4.1.1 Coating growth behavior at CR = 1.50 and IR>1.0 .................................... 34 4.1.2 Coating growth behavior at CR = 1.50 and IR<1.0 .................................... 45 4.2 Soft sparking and arcing regime coating growth behavior at a constant CR<1.0. .................................................................................................................................. 55 4.2.1 Coating growth behavior at CR = 0.65 and IR>1.0 .................................... 55 4.2.2 Coating growth behavior at CR = 0.65 and IR<1.0 .................................... 64 4.3 Soft sparking regime coating growth behavior under IR<1.0 ............................ 73 4.3.1 Effect of CR >1.0 on the soft sparking regime oxide coatings growth behavior at IR = 0.86. .......................................................................................... 73 4.3.2 Effect of CR <1.0 on the soft sparking regime oxide coatings growth behavior at IR = 0.86. .......................................................................................... 82 4.4 Influence of soft sparking and arcing regime on nano-mechanical properties of the ceramic oxide PEO coatings............................................................................... 89 4.4.1 Effect of soft sparking regime coating growth on hardness properties of the oxide layer ............................................................................................................ 89 VII 4.4.2 Effect of arcing regime coating growth on hardness properties of the oxide layer ...................................................................................................................... 91 4.5 Influence of soft sparking and arcing regime on the semiconductive properties of the oxide coatings (Mott- Schottky) .................................................................... 93 CHAPTER 5 ............................................................................................................... 96 CONCLUSIONS ........................................................................................................ 96 REFERENCES ........................................................................................................... 98

[1] Park, K. J., & Lee, J. H. (2009). Effect of Electrolyte Composition on Corrosion
Behavior of PEO Treated AZ91 Mg Alloy. Corrosion Science and Technology, 8(6),
227-231.
[2] Hussein, R., Zhang, P., Nie, X., Xia, Y., & Northwood, D. (2011). The effect of
current mode and discharge type on the corrosion resistance of plasma electrolytic
oxidation (PEO) coated magnesium alloy AJ62. Surface and Coatings Technology,
206(7), 1990-1997.
[3] Melhem, A., Henrion, G., Czerwiec, T., Briançon, J., Duchanoy, T., Brochard, F.,
& Belmonte, T. (2011). Changes induced by process parameters in oxide layers
grown by the PEO process on Al alloys. Surface and Coatings Technology, 205,
S133-S136.
[4] Liang, J., Srinivasan, P. B., Blawert, C., Störmer, M., &Dietzel, W. (2009).
Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on
AM50 magnesium alloy formed in silicate and phosphate based electrolytes.
ElectrochimicaActa, 54(14), 3842-3850.
[5] Walsh, F., Low, C., Wood, R., Stevens, K., Archer, J., Poeton, A., & Ryder, A.
(2009). Plasma electrolytic oxidation (PEO) for production of anodised coatings on
lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 87(3), 122-135.
[6] Dehnavi, V., Binns, W., Noel, J., Shoesmith, D., & Luan, B. (2018). Growth
behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy.
Journal of Magnesium and Alloys, 6(3), 229-237.
[7] Mohedano, M., Lu, X., Matykina, E., Blawert, C., Arrabal, R., &Zheludkevich, M.
(2018). Plasma electrolytic oxidation (PEO) of metals and alloys.
[8] Wang, J.-H., Du, M.-H., Han, F.-Z., & Yang, J. (2014). Effects of the ratio of
anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic
coatings on Al alloys. Applied Surface Science, 292, 658-664
[9] Wu, Y.-k., Yang, Z., Wang, R.-q., Wu, G.-r., Chen, D., Wang, D.-d., . . . Yu, S.-x.
(2018). An investigation of microstructure evolution for plasma electrolytic oxidation
(PEO) coated Al in an alkaline silicate electrolyte. Surface and Coatings Technology,
351, 136-152.
99
[10] Liang, J., Guo, B., Tian, J., Liu, H., Zhou, J., Liu, W., & Xu, T. (2005). Effects
of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings
formed on AM60B magnesium alloy in phosphate–KOH electrolyte. Surface and
Coatings Technology, 199(2-3), 121-126.
[11] Hussein, R. O., & Northwood, D. O. (2014). Production of anti-corrosion
coatings on Light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In
Developments in Corrosion Protection: IntechOpen.
[12] Clyne, T. W., & Troughton, S. C. (2019). A review of recent work on discharge
characteristics during plasma electrolytic oxidation of various metals. International
Materials Reviews, 64(3), 127-162.
[13] Lu, X., Blawert, C., Kainer, K. U., Zhang, T., Wang, F., & Zheludkevich, M. L.
(2018). Influence of particle additions on corrosion and wear resistance of plasma
electrolytic oxidation coatings on Mg alloy. Surface and Coatings Technology, 352,
1-14.
[14] Curran, J., & Clyne, T. (2006). Porosity in plasma electrolytic oxide coatings.
ActaMaterialia, 54(7), 1985-1993.
[15] Becerik, D. A., Ayday, A., Kumruoğlu, L. C., Kurnaz, S. C., & Ö zel, A. (2012).
The effects of Na2SiO3 concentration on the properties of plasma electrolytic
oxidation coatings on 6060 aluminum alloy. Journal of materials engineering and
performance, 21(7), 1426-1430.
[16] Ma, X. (2018). Simulation of Plasma Electrolytic Oxidation (PEO) of AM50 Mg
Alloys and its Experimental Validation. Christian-Albrechts Universität Kiel
[17] Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., & Matykina, E. (2017).
Corrosion and wear of PEO coated AZ91/SiC composites. Surface and Coatings
Technology, 309, 1023-1032.
[18] Timoshenko, A., & Magurova, Y. V. (2005). Investigation of plasma electrolytic
oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes.
Surface and Coatings Technology, 199(2-3), 135-140.
[19] Yerokhin, A., Nie, X., Leyland, A., Matthews, A., & Dowey, S. (1999). Plasma
electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-
93.
[20] Darband, G. B., Aliofkhazraei, M., Hamghalam, P., & Valizade, N. (2017).
Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and
applications. Journal of Magnesium and Alloys, 5(1), 74-132.
100
[21] Zhang, Y., Wu, Y., Chen, D., Wang, R., Li, D., Guo, C., . . . Nash, P. (2017).
Micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on
aluminium at different current densities. Surface and Coatings Technology, 321, 236-
246.
[22] Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K. U., &
Zheludkevich, M. L. (2016). Plasma electrolytic oxidation coatings with particle
additions–a review. Surface and Coatings Technology, 307, 1165-1182.
[23] Simchen, F., Sieber, M., & Lampke, T. (2017). Electrolyte influence on ignition
of plasma electrolytic oxidation processes on light metals. Surface and Coatings
Technology, 315, 205-213.
[24] Cai, Q., Wang, L., Wei, B., & Liu, Q. (2006). Electrochemical performance of
Microarc oxidation films formed on AZ91D magnesium alloy in silicate and
phosphate electrolytes. Surface and Coatings Technology, 200(12-13), 3727-3733.
[25] Ma, Y., Hu, H., Northwood, D., & Nie, X. (2007). Optimization of the
electrolytic plasma oxidation processes for corrosion protection of magnesium alloy
AM50 using the Taguchi method. Journal of materials processing technology, 182(1-
3), 58-64.
[26] Gebarowski, W., & Pietrzyk, S. (2013). Influence of the Cathodic Pulse on the
Formation and Morphology of Oxide Coatings on Aluminium Produced by Plasma
Electrolytic Oxidation/Wpływ Impulsu Katodowego Na Tworzenie I Morfologie
Warstw Tlenkowych Na Aluminium Otrzymywanych Na Drodze Plazmowego
Utleniania Elektrolitycznego. Archives of metallurgy and materials, 58(1), 241-245.
[27] Jaspard-Mécuson, F., Czerwiec, T., Henrion, G., Belmonte, T., Dujardin, L.,
Viola, A., & Beauvir, J. (2007). Tailored aluminium oxide layers by bipolar current
adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coatings
Technology, 201(21), 8677-8682.
[28] Martin, J., Nominé, A., Brochard, F., Briançon, J.-L., Noël, C., Belmonte, T., . . .
Henrion, G. (2017). Delay in micro-discharges appearance during PEO of Al:
Evidence of a mechanism of charge accumulation at the electrolyte/oxide interface.
Applied Surface Science, 410, 29-41.
101
[29] Mordike, B., & Ebert, T. (2001). Magnesium: properties—applications—
potential. Materials Science and Engineering: A, 302(1), 37-45.
[30] Bettles, C., & Gibson, M. (2005). Current wrought magnesium alloys: strengths
and weaknesses. Jom, 57(5), 46-49.
[31] Xianhua, C., Yuxiao, G., & Fusheng, P. (2016). Research progress in magnesium
alloys as functional materials. Rare Metal Materials and Engineering, 45(9), 2269-
2274.
[32] Groover, M. P. (2007). Fundamentals of modern manufacturing: materials
processes, and systems: John Wiley & Sons.
[33] Kulekci, M. K. (2008). Magnesium and its alloys applications in automotive
industry. The International Journal of Advanced Manufacturing Technology, 39(9-10),
851-865.
[34] Powell, B., Luo, A., & Krajewski, P. (2012). Magnesium alloys for lightweight
powertrains and automotive bodies. In Advanced Materials in Automotive
Engineering (pp. 150-209): Elsevier.
[35] Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K., Yi, S., & Letzig, D. (2010).
Effect of rare earth additions on microstructure and texture development of
magnesium alloy sheets. Scripta Materialia, 63(7), 725-730.
[36] Luo, A. A. (2005). Wrought magnesium alloys and manufacturing processes for
automotive applications. SAE transactions, 411-421.
[37] Liu, L.-l., Yang, P.-x., Su, C.-n., Guo, H.-f., & An, M.-z. (2013). Microstructure
and corrosion behavior of micro-arc oxidation film on magnesium alloy. Int. J.
Electrochem. Sci, 8, 6077-6084.
[38] Avedesian, M. M., & Baker, H. (1999). ASM specialty handbook: magnesium
and magnesium alloys: ASM international.
[39] Singh, I., Singh, M., & Das, S. (2015). A comparative corrosion behavior of Mg,
AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys,
3(2), 142-148.
[40] Tsai, D.-S., & Chou, C.-C. (2018). Review of the soft sparking issues in plasma
electrolytic oxidation. Metals, 8(2), 105.
102
[41] Hussein, R., Nie, X., & Northwood, D. (2013). An investigation of ceramic
coating growth mechanisms in plasma electrolytic oxidation (PEO) processing.
Electrochimica Acta, 112, 111-119.
[42] Kamil, M. P., Kaseem, M., & Ko, Y. G. (2017). Soft plasma electrolysis with
complex ions for optimizing electrochemical performance. Scientific reports, 7, 44458.
[43] Hussein, R., Nie, X., & Northwood, D. (2016). Production of high quality
coatings on light alloys using plasma electrolytic oxidation (PEO). WIT transactions
on the built environment, 166, 439-454.
[44] Dehnavi, V. (2014). Surface modification of aluminum alloys by plasma
electrolytic oxidation. Electronic Thesis and Dissertation Repository, 2311, The
University of Western Ontario.
[45] Pezzato, L. (2016). Plasma Electrolytic Oxidation Coatings on Light Alloys.
Ph.D Dissertation, Università Degli Studi Di Padova.
[46] Hussein, R. O. (2015). Plasma Process Control for Improved PEO Coatings on
Magnesium Alloys. Electronic Theses and Dissertations, 5523, University of Windsor
[47] Hussein, R., Nie, X., & Northwood, D. (2015). Plasma electrolytic oxidation
(PEO) coatings on Mg-alloys for improved wear and corrosion resistance. WIT
Transactions on Engineering Sciences, 91, 163-176.
[48] Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., & Rohani, S. (2015).
Correlation between plasma electrolytic oxidation treatment stages and coating
microstructure on aluminum under unipolar pulsed DC mode. Surface and Coatings
Technology, 269, 91-99.
[49] Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., & Thompson, G. (2009).
Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings
Technology, 203(16), 2207-2220.
[50] Joni, M. S., & Fattah-alhosseini, A. (2016). Effect of KOH concentration on the
electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation
(MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 661, 237-244.
[51] Venkateswarlu, K., Rameshbabu, N., Sreekanth, D., Sandhyarani, M., Bose, A.,
Muthupandi, V., & Subramanian, S. (2013). Role of electrolyte chemistry on
electronic and in vitro electrochemical properties of micro-arc oxidized titania films
on Cp Ti. Electrochimica Acta, 105, 468-480.
103
[52] Duan, H., Li, Y., Xia, Y., & Chen, S. (2012). Transient voltage-current
characteristics: new insights into plasma electrolytic oxidation process of aluminium
alloy. Int. J. Electrochem. Sci, 7, 7619-7630.
[53] Metikoš-Huković, M., Omanović, S., & Jukić, A. (1999). Impedance
spectroscopy of semiconducting films on tin electrodes. Electrochimica Acta, 45(6),
977-986.
[54] Li, X., & Bhushan, B. (2002). A review of nanoindentation continuous stiffness
measurement technique and its applications. Materials characterization, 48(1), 11-36.
[55] White, L., Koo, Y., Neralla, S., Sankar, J., & Yun, Y. (2016). Enhanced
mechanical properties and increased corrosion resistance of a biodegradable
magnesium alloy by plasma electrolytic oxidation (PEO). Materials Science and
Engineering: B, 208, 39-46.
[56] Li, Z., Cheng, Y., Kang, S.-h., Tu, W., & Cheng, Y. (2018). A re-understanding
of the breakdown theory from the study of the plasma electrolytic oxidation of a
carbon steel—A non-valve metal. Electrochimica Acta, 284, 681-695.
[57] Duan, H., Yan, C., & Wang, F. (2007). Effect of electrolyte additives on
performance of plasma electrolytic oxidation films formed on magnesium alloy
AZ91D. Electrochimica Acta, 52(11), 3785-3793.
[58] Sempolinski, D., Kingery, W., & Tuller, H. (1980). Electronic conductivity of
single crystalline magnesium oxide. Journal of the American ceramic society,
63(11‐12), 669-675.
[59] Sundararajan, G., & Krishna, L. R. (2003). Mechanisms underlying the formation
of thick alumina coatings through the MAO coating technology. Surface and Coatings
Technology, 167(2-3), 269-277.
[60] Rogov, A. B., Yerokhin, A., & Matthews, A. (2017). The role of cathodic current
in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft
sparking” mode. Langmuir, 33(41), 11059-11069.
[61] Stern, M., & Geary, A. L. (1957). Electrochemical polarization I. A theoretical
analysis of the shape of polarization curves. Journal of the electrochemical society,
104
104(1), 56-63.
[62] Dehnavi, V., Luan, B. L., Shoesmith, D. W., Liu, X. Y., & Rohani, S. (2013).
Effect of duty cycle and applied current frequency on plasma electrolytic oxidation
(PEO) coating growth behavior. Surface and Coatings Technology, 226, 100-107.
[63] Cheng, Y., Wang, T., Li, S., Cheng, Y., Cao, J., & Xie, H. (2017). The effects of
anion deposition and negative pulse on the behaviours of plasma electrolytic
oxidation (PEO)—A systematic study of the PEO of a Zirlo alloy in aluminate
electrolytes. Electrochimica Acta,
225, 47-68.
[64] Dehnavi, V., Shoesmith, D. W., Luan, B. L., Yari, M., Liu, X. Y., & Rohani, S.
(2015). Corrosion properties of plasma electrolytic oxidation coatings on an
aluminium alloy–The effect of the PEO process stage. Materials Chemistry and
Physics, 161, 49-58.
[65] Fadaee, H., & Javidi, M. (2014). Investigation on the corrosion behaviour and
microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation. Journal
of Alloys and Compounds, 604, 36-42.
[66] Chen, W.-w., Wang, Z.-x., Sun, L., & Lu, S. (2015). Research of growth
mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium
alloys at high current mode. Journal of Magnesium and Alloys, 3(3), 253-257.

QR CODE