簡易檢索 / 詳目顯示

研究生: 王鼎騰
Ting-Teng Wang
論文名稱: 利用多酚類天然物開發一種具有指示功能之絲素蛋白不織布 / 絲膠蛋白泡綿組合敷料
Development of a Silk Fibroin Protein non-woven mat / Silk Sericin Protein foam indicative combination dressing
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 鄭詠馨
Yung-Hsin Cheng
謝明發
Ming-Fa Hsieh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 133
中文關鍵詞: 多酚類鞣花酸絲素蛋白絲膠蛋白指示功能螢光
外文關鍵詞: polyphenols, ellagic acid, silk fibroin protein, silk sericin protein, indicative function, fluorescence
相關次數: 點閱:310下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傷口換藥為促進傷口癒合的必要措施,但是當敷料沾黏於傷口上時移除敷料的動作會對傷口產生剪力導致組織受損,若能提供增加護理人員辨識敷料狀態的方案,將會有助於減少病人換藥的次數。本研究成功利用鞣花酸、聚乙烯醇、絲素蛋白與絲膠蛋白開發一項具有指示功能的組合敷料,其中包含不織布指示層與泡綿接觸層,不織布指示層由絲素蛋白與聚乙烯醇利用靜電紡絲技術堆疊形成,並將鞣花酸附加於不織布表面,泡綿接觸層由絲膠蛋白與聚乙烯醇混合製備形成,可以做運用於滲出液的吸收與控制。利用紫外光吸收光譜與螢光放光光譜評估組合敷料吸收模擬體液前的螢光反應和吸收模擬體液後的螢光淬滅,在乾燥狀態下綠螢光的強度比例會提升,整體螢光放光光譜會發生紅移形成螢光反應,吸收模擬體液後綠螢光的強度比例會下降,波長與沒有鞣花酸的部分相似,形成螢光淬滅。在紫外光吸收光譜、FTIR與XPS結果中推論分子之間的作用力,並分析共價結構在過程中引發螢光反應與螢光淬滅的化學原理。利用四甲基偶氮唑鹽微量酶反應比色法評估鞣花酸、聚乙烯醇、絲素蛋白與絲膠蛋白的生物相容性,確定絲膠蛋白同時具有生物相容性與輔助細胞增生的能力。動物實驗評估市售棉墊、不織布與組合敷料的指示功能與傷口癒合效果,實驗結果中組合敷料組傷口面積的縮減率明顯高於其他組別,證明組合敷料具有促進傷口的復原的能力。


In clinical, wound dressing is a necessary medical material to protect and promote wound healing, but postoperative adhesions of dressing cause serious complications in the process of wound healing. It has necessity to provide an dressing material which can reduce requirement of dressing exchange. In this study, we developed an indicative combination dressing which was composed of indicative non-woven and foam dressing. Indicative non-woven mat was fabricated by silk fibroin protein (SFP) and polyvinyl alcohol (PVA) via the single‐spinneret electrospinning technique. The indicative function of non-woven mat was provided by ellagic acid (EA) which is a kind of polyphenols. Foam dressing was an absorbent layer composed of sericin that could control the wettability of wound microenvironment. The indicative function of dressing was attributed to the fluorescence emission which was proved by ascend of UV absorption spectrum and fluorescence emission spectrum. Result of indicative function could be elucidiated by UV absorption spectroscopy, Fourier Transform Infrared Spectrometer and X-ray photoelectron spectroscopy. Our preliminary results indicated that the combination dressing shows potential as a highly hydrophilic, excellent absorptive and low cost wound management material.

摘要 I ABSTRACT II 目錄 IV 表目錄 IX 圖目錄 X 中英文縮寫對照表 XIII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 第2章 文獻回顧 2 2.1 傷口癒合 2 2.1.1 傷口癒合過程-發炎期 2 2.1.2 傷口癒合過程-增生期 2 2.1.3 傷口癒合過程-重塑期 3 2.2 傷口敷料 3 2.2.1 敷料設計 3 2.2.2 敷料分類-透明薄膜敷料( Film dressings ) 3 2.2.3 敷料分類-敷貼敷料( Simple island dressings ) 4 2.2.4 敷料分類-抗沾黏敷料( Non-adherent dressings ) 4 2.2.5 敷料分類-濕式敷料( Moist dressings ) 4 2.2.6 敷料分類-吸收性敷料( Absorbent dressings ) 5 2.3 靜電紡絲系統 6 2.3.1 靜電紡絲技術 6 2.3.2 靜電紡絲之設置 6 2.3.3 影響靜電紡絲系統之主要因素 7 2.4 蠶絲蛋白 8 2.4.1 蠶絲蛋白之結構與物化性質 8 2.4.2 絲素蛋白( Silk fibroin protein, SFP ) 8 2.4.3 絲膠蛋白( Silk sericin protein, SSP ) 9 2.5 聚乙烯醇( Polyvinyl alcohol, PVA ) 9 2.5.1 聚乙烯醇之物化性質 9 2.5.2 聚乙烯醇之應用 10 2.6 鞣花酸( Ellagic acid, EA ) 10 2.6.1 多酚類天然物-鞣花酸( Ellagic acid, EA ) 10 2.6.2 鞣花酸之光學變性 11 2.7 蠶絲蛋白之相關指示性研究文獻回顧 12 2.7.1 光子晶體 12 2.7.2 光致螢光 12 第3章 實驗內容 14 3.1 實驗設計與流程 14 3.1.1 實驗設計 14 3.1.2 實驗流程 15 3.2 實驗材料與儀器 16 3.2.1 材料 16 3.2.2 :儀器 18 3.3 製備絲素蛋白與絲膠蛋白原塊 19 3.3.1 分離絲素蛋白與絲膠蛋白 19 3.3.2 製備絲素蛋白原塊 19 3.3.3 製備絲膠蛋白原塊 19 3.4 組合敷料製備步驟 20 3.4.1 不織布指示層之製備 20 3.4.2 SSP / PVA混合液之合成 20 3.4.3 指示性組合敷料之製備 21 3.5 實驗分析 21 3.5.1 掃描式電子顯微鏡( Scanning Electron Microscope, SEM ) 21 3.5.2 水銀測孔儀( Mercury Porosimeter ) 21 3.5.3 微孔盤光譜分析儀( Plate Reader ) 22 3.5.4 光致螢光測譜儀( Photoluminescence, PL ) 22 3.5.5 傅立葉紅外線光譜儀( Fourier Transform Infrared Spectrometer, FTIR ) 23 3.5.6 X射線光電子能譜儀( X-ray photoelectron spectroscopy, XPS ) 23 3.6 細胞毒性測試 24 3.6.1 四甲基偶氮唑鹽( MTT )微量酶反應比色法 24 3.6.2 細胞毒性測試步驟 24 3.7 動物創傷實驗 25 3.7.1 實驗動物-國家實驗動物中心C57BL / 6JNarl次品系小鼠 25 3.7.2 創傷實驗流程 26 第4章 研究結果與討論 28 4.1 組合敷料結構之分析 28 4.1.1 敷料結構-不織布指示層 28 4.1.2 敷料結構-泡綿接觸層 28 4.1.3 敷料結構-組合敷料切面 29 4.1.4 敷料結構-孔隙結構 29 4.2 指示功能之測試 29 4.2.1 指示功能測試-模擬體液 (Simulated Body Fluid, SBF ) 反應測試 29 4.2.2 指示功能測試-紫外光吸收光譜與螢光放光光譜 31 4.2.3 指示功能測試-組合敷料之固態螢光分析 32 4.3 指示功能之分析 33 4.3.1 指示原理分析-FTIR光譜圖分析 33 4.3.2 指示原理分析-XPS能譜圖分析 34 4.4 組合敷料之細胞毒性 34 4.5 動物創傷實驗 35 4.5.1 市售棉墊對照組 35 4.5.2 指示性不織布組 36 4.5.3 指示性組合敷料組 37 4.5.4 傷口癒合效果之比較 38 4.5.5 病理切片之分析 38 第5章 討論 40 第6章 結論 43 參考文獻 45 附件 115

[1] James R. Hanna D, Joseph A. Giacopelli D, MS, FACFAS2. A review of wound healing and wound dressing products. The Journal of Foot and Ankle Surgery. 1997;36:2-14.
[2] Velnar T, Bailey T, Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research. 2009;37:1528-42.
[3] Winter GD, Scales JT. Effect of Air Drying and Dressings on the Surface of a Wound. Nature. 1963;197:91.
[4] Iwanaga T, Tominaga M, Hirata Y, Matsuda H, Shimanuki T, Ogawa H, et al. Effects of Film Dressings on Itch Hypersensitivity Using Murine Dry Skin Models. Acta Derm Venereol. 2018.
[5] Ahmed A, Boateng J. Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Therapeutic Delivery. 2018;9:185-204.
[6] Unnithan AR, Ghavami Nejad A, Sasikala ARK, Thomas RG, Jeong YY, Murugesan P, et al. Electrospun zwitterionic nanofibers with in situ decelerated epithelialization property for non-adherent and easy removable wound dressing application. Chemical Engineering Journal. 2016;287:640-8.
[7] Hackl F, Kiwanuka E, Philip J, Gerner P, Aflaki P, Diaz-Siso JR, et al. Moist dressing coverage supports proliferation and migration of transplanted skin micrografts in full-thickness porcine wounds. Burns. 2014;40:274-80.
[8] Mozalewska W, Czechowska-Biskup R, Olejnik AK, Wach RA, Ulański P, Rosiak JM. Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiation Physics and Chemistry. 2017;134:1-7.
[9] Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research. 2017;8:217-33.
[10] Bishopp A, Oakes A, Watson A, Chakraborty B, Stygall G, Antoine-Pitterson P, et al. P125 The effect of preventative hydrocolloid nasal dressings in acute non invasive ventilation (niv)-related nasal bridge pressure ulceration. Thorax. 2017;72:A150.
[11] Jones ML. An introduction to absorbent dressings. British Journal of Community Nursing. 2014;19:S28-S30.
[12] Browning P, White RJ, Rowell T. Comparative evaluation of the functional properties of superabsorbent dressings and their effect on exudate management. Journal of Wound Care. 2016;25:452-62.
[13] Dumville JC, Keogh SJ, Liu Z, Stubbs N, Walker RM, Fortnam M. Alginate dressings for treating pressure ulcers. Sao Paulo Medical Journal. 2015;133:455-.
[14] Davis Stephen C, Li J, Gil J, Valdes J, Solis M, Higa A, et al. The wound-healing effects of a next-generation anti-biofilm silver Hydrofiber wound dressing on deep partial-thickness wounds using a porcine model. International Wound Journal. 2018;0.
[15] Yang Y, Hu H. Spacer fabric-based exuding wound dressing – Part II: Comparison with commercial wound dressings. Textile Research Journal. 2016;87:1481-93.
[16] Larkö E, Persson A, Blom K. Effect of superabsorbent dressings in a 3D acellular tissue model of Pseudomonas aeruginosa biofilm. Journal of Wound Care. 2015;24:204-10.
[17] Greiner A, Wendorff Joachim H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angewandte Chemie International Edition. 2007;46:5670-703.
[18] Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics. 1995;35:151-60.
[19] Fang J, Niu H, Lin T, Wang X. Applications of electrospun nanofibers. Chinese Science Bulletin. 2008;53:2265.
[20] Zhang X, Tsukada M, Morikawa H, Aojima K, Zhang G, Miura M. Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Research Letters. 2011;6:510.
[21] Teramoto H, Kameda T, Tamada Y. Preparation of Gel Film from <I>Bombyx mori</I> Silk Sericin and Its Characterization as a Wound Dressing. Bioscience, Biotechnology, and Biochemistry. 2008;72:3189-96.
[22] Kim U-J, Park J, Joo Kim H, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775-85.
[23] Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews. 2013;65:457-70.
[24] Dinerman AA, Cappello J, Ghandehari H, Hoag SW. Solute diffusion in genetically engineered silk–elastinlike protein polymer hydrogels. Journal of Controlled Release. 2002;82:277-87.
[25] Omenetto FG, Kaplan DL. New Opportunities for an Ancient Material. Science. 2010;329:528.
[26] Megeed Z, Cappello J, Ghandehari H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Advanced Drug Delivery Reviews. 2002;54:1075-91.
[27] Ribeiro M, Fernandes MH, Beppu MM, Monteiro FJ, Ferraz MP. Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells. Materials Science and Engineering: C. 2018;89:336-45.
[28] Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Materials Science and Engineering: C. 2018;89:456-69.
[29] Galloway CA, Dalvi S, Shadforth AMA, Suzuki S, Wilson M, Kuai D, et al. Characterization of Human iPSC-RPE on a Prosthetic Bruch's Membrane Manufactured From Silk Fibroin. Investigative Ophthalmology & Visual Science. 2018;59:2792-800.
[30] Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289-97.
[31] Das S, Pati F, Choi Y-J, Rijal G, Shim J-H, Kim SW, et al. Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomaterialia. 2015;11:233-46.
[32] Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomaterialia. 2016;31:1-16.
[33] Liu H, Xu GW, Wang YF, Zhao HS, Xiong S, Wu Y, et al. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials. 2015;49:103-12.
[34] Shao W, He J, Sang F, Ding B, Chen L, Cui S, et al. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Materials Science and Engineering: C. 2016;58:342-51.
[35] Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols. 2011;6:1612.
[36] Servoli E, Maniglio D, Motta A, Predazzer R, Migliaresi C. Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts. Macromolecular Bioscience. 2005;5:1175-83.
[37] Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews. 2009;61:988-1006.
[38] Zhang Y-Q. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances. 2002;20:91-100.
[39] Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T. Monitoring of inflammatory mediators induced by silk sericin. Journal of Bioscience and Bioengineering. 2009;107:556-61.
[40] Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Sericin Enhances Attachment of Cultured Human Skin Fibroblasts. Bioscience, Biotechnology, and Biochemistry. 2005;69:403-5.
[41] Khampieng T, Aramwit P, Supaphol P. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy. International Journal of Biological Macromolecules. 2015;80:636-43.
[42] Sapru S, Ghosh AK, Kundu SC. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydrate Polymers. 2017;167:196-209.
[43] Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, et al. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. Materials Science and Engineering: C. 2016;69:388-97.
[44] Halder PK, Naskar D, Kumar A, Yao J, Kundu SC, Ghosh AS. Potential Mode of Protection of Silkworm Pupae from Environmental Stress by Harboring the Bacterial Biofilm on the Surfaces of Silk Cocoons. Current Microbiology. 2015;70:228-34.
[45] Zhao R, Li X, Sun B, Tong Y, Jiang Z, Wang C. Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing applications. RSC Advances. 2015;5:16940-9.
[46] Rao J-W, Ouyang L-Q, Jia X-l, Quan D-P, Xu Y-B. THE FABRICATION AND CHARACTERIZATION OF 3D POROUS SERICIN/FIBROIN BLENDED SCAFFOLDS. Biomedical Engineering: Applications, Basis and Communications. 2011;23:1-12.
[47] Ampawong S, Aramwit P. In vivo safety and efficacy of sericin/poly(vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications. Journal of Bioactive and Compatible Polymers. 2017;32:582-95.
[48] Vepari C, Kaplan DL. Silk as a biomaterial. Progress in Polymer Science. 2007;32:991-1007.
[49] Li W, Cai Y, Zhong Q, Yang Y, Kundu SC, Yao J. Silk sericin microcapsules with hydroxyapatite shells: protection and modification of organic microcapsules by biomimetic mineralization. Journal of Materials Chemistry B. 2016;4:340-7.
[50] Shi L, Yang N, Zhang H, Chen L, Tao L, Wei Y, et al. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Materials Science and Engineering: C. 2015;48:533-40.
[51] Neves NM, Reis RL. Biomaterials from Nature for Advanced Devices and Therapies: Wiley; 2016.
[52] Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnology Advances. 2015;33:1855-67.
[53] Li N, Liu W, Wu Z, Xu Y, Shu T, Lu K, et al. Recovery of silk sericin from the filature wastewater by using a novel foam fractionation column. Chemical Engineering and Processing - Process Intensification. 2018;129:37-42.
[54] DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology. 2003;41:319-26.
[55] Abudabbus MM, Jevremović I, Janković A, Perić-Grujić A, Matić I, Vukašinović-Sekulić M, et al. Biological activity of electrochemically synthesized silver doped polyvinyl alcohol/graphene composite hydrogel discs for biomedical applications. Composites Part B: Engineering. 2016;104:26-34.
[56] Gaaz ST, Sulong BA, Akhtar NM, Kadhum AA, Mohamad BA, Al-Amiery AA. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules. 2015;20.
[57] Kamoun EA, Chen X, Mohy Eldin MS, Kenawy E-RS. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry. 2015;8:1-14.
[58] Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 2015;65:252-67.
[59] Habiba U, Afifi AM, Salleh A, Ang BC. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials. 2017;322:182-94.
[60] Kim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials. 2015;40:51-60.
[61] Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers. 2014;100:166-78.
[62] Aramwit P, Siritientong T, Kanokpanont S, Srichana T. Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin. International journal of biological macromolecules. 2010;47:668-75.
[63] Kim S, Gaber MW, Zawaski JA, Zhang F, Richardson M, Zhang XA, et al. The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. Biomaterials. 2009;30:4743-51.
[64] Rogerio AP, Fontanari C, Borducchi É, Keller AC, Russo M, Soares EG, et al. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. European Journal of Pharmacology. 2008;580:262-70.
[65] González-Sarrías A, Tomé-Carneiro J, Bellesia A, Tomás-Barberán FA, Espín JC. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food & Function. 2015;6:1460-9.
[66] Núñez-Sánchez MÁ, Karmokar A, González-Sarrías A, García-Villalba R, Tomás-Barberán FA, García-Conesa MT, et al. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer. Food and Chemical Toxicology. 2016;92:8-16.
[67] González-Sarrías A, Núñez-Sánchez María Á, Tomé-Carneiro J, Tomás-Barberán Francisco A, García-Conesa María T, Espín Juan C. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Molecular Nutrition & Food Research. 2015;60:701-16.
[68] Seeram NP, Lee R, Heber D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clinica Chimica Acta. 2004;348:63-8.
[69] Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids and Surfaces B: Biointerfaces. 2013;110:313-20.
[70] Rumjahn SM, Javed MA, Wong N, Law WE, Buxton ILO. Purinergic regulation of angiogenesis by human breast carcinoma-secreted nucleoside diphosphate kinase. British Journal Of Cancer. 2007;97:1372.
[71] Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y, Cass B, et al. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. 2005;26:821-6.
[72] Przewloka SR, Shearer BJ. The Further Chemistry of Ellagic Acid II. Ellagic Acid and Water-Soluble Ellagates as Metal Precipitants. Holzforschung2002. p. 13.
[73] Huang S-T, Wang C-Y, Yang R-C, Wu H-T, Yang S-H, Cheng Y-C, et al. Ellagic Acid, the Active Compound of Phyllanthus urinaria, Exerts In Vivo Anti-Angiogenic Effect and Inhibits MMP-2 Activity. Evidence-Based Complementary and Alternative Medicine. 2011;2011.
[74] Huang S-T, Yang R-C, Wu H-T, Wang C-N, Pang J-HS. Zinc-Chelation Contributes to the Anti-Angiogenic Effect of Ellagic Acid on Inhibiting MMP-2 Activity, Cell Migration and Tube Formation. PLOS ONE. 2011;6:e18986.
[75] Chen W-H, Luo G-F, Lei Q, Jia H-Z, Hong S, Wang Q-R, et al. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chemical Communications. 2015;51:465-8.
[76] González-Barrio R, Truchado P, Ito H, Espín JC, Tomás-Barberán FA. UV and MS Identification of Urolithins and Nasutins, the Bioavailable Metabolites of Ellagitannins and Ellagic Acid in Different Mammals. Journal of Agricultural and Food Chemistry. 2011;59:1152-62.
[77] Nanda RK, Sarkar N, Banerjee R. Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry. 2007;192:152-8.
[78] Diao Ying Y, Liu Xiang Y, Toh Guoyang W, Shi L, Zi J. Multiple Structural Coloring of Silk-Fibroin Photonic Crystals and Humidity-Responsive Color Sensing. Advanced Functional Materials. 2013;23:5373-80.
[79] Reshetnyak YK, Burstein EA. Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. II. The Statistical Proof of Discreteness of Tryptophan Classes in Proteins. Biophysical Journal. 2001;81:1710-34.
[80] Yuan W, Zhou N, Shi L, Zhang K-Q. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering. ACS Applied Materials & Interfaces. 2015;7:14064-71.
[81] Li Q, Qi N, Peng Y, Zhang Y, Shi L, Zhang X, et al. Sub-micron silk fibroin film with high humidity sensibility through color changing. RSC Advances. 2017;7:17889-97.
[82] Reshetnyak YK, Koshevnik Y, Burstein EA. Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. III. Correlation between Fluorescence and Microenvironment Parameters of Individual Tryptophan Residues. Biophysical Journal. 2001;81:1735-58.
[83] Lakowicz JR. Principles of Frequency-Domain Fluorescence Spectroscopy and Applications to Cell Membranes. In: Hilderson HJ, editor. Fluorescence Studies on Biological Membranes. Boston, MA: Springer US; 1988. p. 89-126.
[84] Ogino M, Tanaka R, Hattori M, Yoshida T, Yokote Y, Takahashi K. Interfacial Behavior of Fatty-Acylated Sericin Prepared by Lipase-Catalyzed Solid-Phase Synthesis. Bioscience, Biotechnology, and Biochemistry. 2006;70:66-75.
[85] Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, et al. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Scientific Reports. 2014;4:7064.
[86] Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28:4717-32.
[87] Georgakoudi I, Tsai I, Greiner C, Wong C, DeFelice J, Kaplan D. Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices. Opt Express. 2007;15:1043-53.
[88] Burstein EA, Abornev SM, Reshetnyak YK. Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. I. Decomposition Algorithms. Biophysical Journal. 2001;81:1699-709.
[89] Malencik DA, Anderson SR. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids. 2003;25:233-47.
[90] Jin H-J, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057.
[91] Rootare HM, Prenzlow CF. Surface areas from mercury porosimeter measurements. The Journal of Physical Chemistry. 1967;71:2733-6.
[92] Rootare HM. A Review of Mercury Porosimetry. In: Hirschhorn JS, Roll KH, editors. Advanced Experimental Techniques in Powder Metallurgy: Based on a Symposium on Advanced Experimental Techniques in Powder Metallurgy sponsored by the Institute of Metals Division, Powder Metallurgy Committee, held at the Spring Meeting of The Metallurgical Society of AIME in Pittsburgh, Pennsylvania, May 1969. Boston, MA: Springer US; 1970. p. 225-52.
[93] Bhattacharjee P, Kundu B, Naskar D, Maiti Tapas K, Bhattacharya D, Kundu Subhas C. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration. Biopolymers. 2014;103:271-84.
[94] Bhardwaj N, Rajkhowa R, Wang X, Devi D. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. International Journal of Biological Macromolecules. 2015;81:31-40.
[95] Jackson M, Mantsch HH. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Critical Reviews in Biochemistry and Molecular Biology. 1995;30:95-120.
[96] Amornsudthiwat P, Mongkolnavin R, Kanokpanont S, Panpranot J, Wong CS, Damrongsakkul S. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma. Colloids and Surfaces B: Biointerfaces. 2013;111:579-86.
[97] Al-Obaidi MMJ, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E. Protective effect of ellagic acid on healing alveolar bone after tooth extraction in rat—A histological and immunohistochemical study. Archives of Oral Biology. 2014;59:987-99.
[98] Raudone L, Bobinaite R, Janulis V, Viskelis P, Trumbeckaite S. Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages. Food & Function. 2014;5:1167-74.
[99] 有機分子光譜分析: 中央圖書; 1988.
[100] 光化學: 五南; 2004.

無法下載圖示 全文公開日期 2023/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE