簡易檢索 / 詳目顯示

研究生: 莉莎
Elisabeth - Widowati
論文名稱: 高壓下離子液體與苯乙酮、茴香醚或異丙醇混合物之PVT性質研究
PVT Properties of Mixtures of Ionic Liquids with Acetophenone, Anisole, or 2-Propanol at Elevated Pressures
指導教授: 李明哲
Ming-Jer Lee
口試委員: 陳立仁
Li-Ren Chen
林祥泰
Shiang-Tai Lin
李夢輝
Meng-Hui Li
林河木
Ho-mu Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 245
中文關鍵詞: PVT性質離子液體
外文關鍵詞: PVT properties, ionic liquid
相關次數: 點閱:332下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們使用了一個高壓密度儀來測量離子液體溶液在溫度介於298.15 K至348.15 K,壓力為0.1至 50 MPa的密度數據。這些混合物溶液共含11組雙成分系統,其中包含3種溶劑:anisole, acetophenone和2-propanol和5種離子液體: [ C3mpip ] [ NTf2],[ C3mpyr ] [ NTf2],[ C4mim ] [ NTf2],[ Et2MeS ] [ NTf2]和[ Bmpy ] [ NTf2]。在整個壓力範圍內的密度數據可用Tait模式準確關聯。
    過剩體積可由實驗的密度數據計算來取得。在一般情況下,在離子液體富集區之外其過剩體積皆為負值。這些混合物的過剩體積與組成之變化均可用Redlich-Kister和modified Redlich-Kister模式表示。實驗所得知雙成份PVT數據均可用FOV與Schotte狀態方程式準確關聯,各系統之雙成份交互作用參數可由雙成份之PVT數據擬合狀態方程式訂定。 Schotte狀態方程式關聯結果略優於FOV狀態方程式。


    In this study, we used a high-pressure vibrating tube densimeter to measure the densities of ionic liquid solutions at temperatures from 298.15 K to 348.15 K and pressures from 0.1 to 50 MPa. The mixture solutions included 11 binary systems, which contained 3 solvents : anisole, acetophenone, and 2-propanol, and 5 ionic liquids : [C3mpip][NTf2], [C3mpyr][NTf2], [C4mim][NTf2], [Et2MeS][NTf2], and [Bmpy][NTf2]. The Tait equation correlate well the experimental density data over the entire pressure range.
    The excess volumes were calculated from the experimental density data.. In general, the excess volumes are negative except in the ionic liquid-rich region.. The Redlich-Kister and the modified Redlich-Kister model represented well the excess volumes varying with composition at specific temperature and pressure. The FOV (Flory-Orwoll-Vrij) and the Schotte equations of state were also employed to correlate the PVT data. The binary interaction parameter for each binary system was determined by fitting the binary PVT data to the equations of state. The Schotte equation of state is slightly better than the FOV equation of state.

    Contents Abstract i 摘要 iv Acknowledgement v Contents vi List of Figures viii List of Tables xvi 1 Introduction 1 1.1 Ionic Liquids 1 1.1.1 Physical properties 2 1.1.2 Previous study 4 1.1.3 Applications 7 1.2 Focus of the Study 14 1.3 Significance of the Study 16 1.4 Dissertation Outline 16 2 Theories and Correlations 18 2.1 Density 18 2.2 Derived Properties and Thermodynamic Correlations 19 2.2.1 Density Data Correlation 19 2.2.2 Isothermal Compressibility 20 2.2.3 Excess Molar Volume 21 2.3 Equations of State 22 2.3.1 Flory-Orwoll-Vrij (FOV) Equation of State 22 2.3.2 Schotte Equation of State 23 2.3.3 Mixing Rules 24 3 Experimental Section 26 3.1 Materials 26 3.2 Measurement of Density at Ambient Pressure 27 3.3 Measurement of Viscosity at Ambient Pressure 28 3.4 Measurement of Density at High Pressures 28 4 Results and Discussions 35 5 Conclusion 231 References 233 Nomenclature 241 Biographical Data 243

    Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K. ; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun., 2001, 19, 2010-2011.

    Abdulagatov, I.M.; Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. High-Pressure Densities and Derived Volumetric Properties (Excess, Apparent, and Partial Molar Volumes) of Binary Mixtures of {Methanol (1) + [Bmim][BF4] (2)}. J. Chem. Thermodyn., 2008, 40, 1386-1401.

    Abraham, M.H.; Zissimos, A.M.; Huddleston, J.G.; Willauer, H.D.; Rogers, R.D. ; Acree, W.E. Some Novel Liquid Partitioning Systems:  Water−Ionic Liquids and Aqueous Biphasic Systems. Ind. Eng. Chem., Process Des. Dev., 2003, 42, 413-418.

    Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing Ionic Liquids on the Basis of Multiple Solvation Interactions. J. Am. Chem. Soc., 2002, 124, 14247-14254.

    Annat, G.; Forsyth, M.; MacFarlane, D.R. Ionic Liquid Mixtures—Variations in Physical Properties and Their Origins in Molecular Structure. J. Phys. Chem. B, 2012, 116, 8251-8258.

    Ashcroft, S.J.; Booker, D.R.; Turner, J.C.R. Density Measurement by Oscillating Tube. Effects of Viscosity, Temperature, Calibration and Signal Processing. J. Chem. Soc., Faraday Trans., 1990, 86, 145-149.

    Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J.L.; Palacios, J.C. Greener Media in Chemical Synthesis and Processing. Angew. Chem. Int. Ed., 2006, 45, 3904-3908.

    Bernot, R.; Kennedy, E.; Lamberti, G. Effects of Ionic Liquids on the Survival, Movement, and Feeding Behavior of the Freshwater Snail, Physa Acuta. Environ. Toxicol. Chem., 2005, 24, 1759-1765.

    Blanchard, L.A.; Gu, Z.; Brennecke, J.F. High-Pressure Phase Behavior of Ionic Liquid/Co2 Systems. J. Phys. Chem. B, 2001, 105, 2437-2444.
    Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green Processing Using Ionic Liquids and Co2. Nature, 1999, 399, 28-29.

    Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorg. Chem., 1996, 35, 1168-1178.

    Brennecke, J.; Letcher, T.; Goodwin, A.R.H. Preface. J. Chem. Thermodyn., 2005, 37, 523.

    Brennecke, J.F.; Maginn, E.J. (2003). Purification of Gas with Liquid Ionic Compounds, Google Patents (US6579343).

    Carvalho, P.J.; Neves, C.M.S.S.; Coutinho, J.A.P. Surface Tensions of Bis(trifluoromethylsulfonyl)Imide Anion-Based Ionic Liquids. J. Chem. Eng. Data, 2010, 55, 3807-3812.

    Cheng, H.; Zhu, C.; Huang, B.; Lu, M.; Yang, Y. Synthesis and Electrochemical Characterization of Peo-Based Polymer Electrolytes with Room Temperature Ionic Liquids. Electrochim. Acta, 2007, 52, 5789-5794.

    Chiappe, C.; Malvaldi, M.; Pomelli, C.S. Ionic Liquids: Solvation Ability and Polarity. Pure Appl. Chem., 2009, 81, 767 - 776.

    Crowhurst, L.; Mawdsley, P.R.; Perez-Arlandis, J.M.; Salter, P.A.; Welton, T. Solvent-Solute Interactions in Ionic Liquids. PCCP, 2003, 5, 2790-2794.

    Domańska, U.; Laskowska, M. Phase Equilibria and Volumetric Properties of (1-Ethyl-3-Methylimidazolium Ethylsulfate + Alcohol or Water) Binary Systems. J. Solution Chem., 2008, 37, 1271-1287.

    Dymond, J.H.; Malhotra, R. The Tait Equation: 100 Years On. Int. J. Thermophys., 1988, 9, 941-951.

    Earle, M.; Wasserscheid, P.; Schulz, P.; Olivier-Bourbigou, H.; Favre, F.; Vaultier, M.; Kirschning, A.; Singh, V.; Riisager, A.; Fehrmann, R. ; Kuhlmann, S. (2008). Organic Synthesis. Ionic Liquids in Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA: 265-568.

    Earle, M.J.; Esperanca, J.M.S.S.; Gilea, M.A.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The Distillation and Volatility of Ionic Liquids. Nature, 2006, 439, 831-834.

    Earle, M.J.; Seddon, K.R. Ionic Liquids. Green Solvents for the Future. Pure Appl. Chem., 2000, 72, 1391-1398.

    Endres, F. Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors. Chemical Physics and Physical Chemistry, 2002, 3, 144-154.

    Flory, P.J.; Orwoll, R.A.; Vrij, A. Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons. J. Am. Chem. Soc., 1964, 86, 3507-3514.

    Gardas, R.L.; Costa, H.F.; Freire, M.G.; Carvalho, P.J.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P. Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-Based Ionic Liquids. J. Chem. Eng. Data, 2008, 53, 805-811.

    Gardas, R.L.; Coutinho, J.A.P. A Group Contribution Method for Viscosity Estimation of Ionic Liquids. Fluid Phase Equilib., 2008, 266, 195-201.

    Gardas, R.L.; Freire, M.G.; Carvalho, P.J.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P. High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data, 2007, 52, 80-88.

    Gomes de Azevedo, R.; Esperanca, J.M.S.S.; Szydlowski, J.; Visak, Z.P.; Pires, P.F.; Guedes, H.J.R.; Rebelo, L.P.N. Thermophysical and Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range: [Bmim][NTf2] and [Hmim][NTf2]. J. Chem. Thermodyn., 2005, 37, 888-899.

    Gu, Z.; Brennecke, J.F. Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids. J. Chem. Eng. Data, 2002, 47, 339-345.

    Harmony, S.C.; Bonner, D.C.; Heichelheim, H.R. Calculation of Phase Equilibria for Ethylene/Low-Density Polyethylene Mixtures. AlChE J., 1977, 23, 758-764.
    Harris, K.R.; Kanakubo, M.; Woolf, L.A. Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-Methylimidazolium Hexafluorophosphate and 1-Butyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)Imide. J. Chem. Eng. Data, 2007, 52, 1080-1085.

    Heintz, A. Recent Developments in Thermodynamics and Thermophysics of Non-Aqueous Mixtures Containing Ionic Liquids. A Review. J. Chem. Thermodyn., 2005, 37, 525.

    Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chemistry, 2001, 3, 156-164.

    Jacquemin, J.; Husson, P.; Mayer, V.; Cibulka, I. High-Pressure Volumetric Propertied of Imidazolium-Based Ionic Liquids: Effect of the Anion. J. Chem. Eng. Data, 2007, 52, 2204-2211.

    Jacquemin, J.; Nancarrow, P.; Rooney, D.W.; Costa Gomes, M.F.; Husson, P.; Majer, V.; Pádua, A.A.H.; Hardacre, C. Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure. J. Chem. Eng. Data, 2008, 53, 2133-2143.

    Jiqin, Z.; Jian, C.; Chengyue, L.; Weiyang, F. Study on the Separation of 1-Hexene and Trans-3-Hexene Using Ionic Liquids. Fluid Phase Equilib., 2006, 247, 102-106.

    Lazzus, J.A. –T–P Prediction for Ionic Liquids Using Neural Networks. J. Taiwan Inst. Chem. Eng, 2009, 40, 213-232.

    Lee, M.-J.; Tuan, Y.-C.; Lin, H.-m. Pressure, Volume, and Temperature for Mixtures of Poly(Ethylene Glycol Methyl Ether)-350 + Anisole and Poly(Ethylene Glycol)-200 + Anisole from 298 K to 338 K and Pressures up to 50 Mpa. J. Chem. Eng. Data, 2000, 45, 1100-1104.

    Lewandowski, A.; Swiderska-Mocek, A. Lithium-Metal Potential in Li+ Containing Ionic Liquids. J. Appl. Electrochem., 2010, 40, 515-524.

    Lundstrum, R.; Goodwin, A.R.H.; Hsu, K.; Frels, M.; Caudwell, D.R.; Trusler, J.P.M.; Marsh, K.N. Measurement of the Viscosity and Density of Two Reference Fluids, with Nominal Viscosities at T = 298 K and P = 0.1 MPa of (16 and 29) mPa‧s, at Temperatures between (298 and 393) K and Pressures Below 55 MPa. J. Chem. Eng. Data, 2005, 50, 1377-1388.

    Machida, H.; Taguchi, R.; Sato, Y.; Smith Jr, R.L. Analysis of Ionic Liquid PVT Behavior with a Modified Cell Model. Fluid Phase Equilib., 2009, 281, 127-132.

    Majewski, P.; Pernak, A.; Grzymisławski, M.; Iwanik, K.; Pernak, J. Ionic Liquids in Embalming and Tissue Preservation.: Can Traditional Formalin-Fixation Be Replaced Safely? Acta Histochemica, 2003, 105, 135-142.

    Martino, W.; de la Mora, J.F.; Yoshida, Y.; Saito, G.; Wilkes, J. Surface Tension Measurements of Highly Conducting Ionic Liquids. Green Chemistry, 2006, 8, 390-397.

    Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Feasibility of Ionic Liquids as Alternative Separation Media for Industrial Solvent Extraction Processes. Ind. Eng. Chem. Res., 2005, 44, 4368-4372.

    NIST "Thermophysical Properties of Water, Nist Standard Reference Database Number 69." from webbook.nist.gov/chemistry/.

    Oldham Warren, J.; Costa David, A.; Smith Wayne, H. (2002). Development of Room-Temperature Ionic Liquids for Applications in Actinide Chemistry. Ionic Liquids, American Chemical Society. 818: 188-198.

    Oliveira, F.S.; Freire, M.G.; Carvalho, P.J.; Coutinho, J.A.P.; Lopes, J.N.C.; Rebelo, L.s.P.; Marrucho, I.M. Structural and Positional Isomerism Influence in the Physical Properties of Pyridinium NTf2-Based Ionic Liquids: Pure and Water-Saturated Mixtures†. J. Chem. Eng. Data, 2010, 55, 4514-4520.

    Orchilles, A.V.; Miguel, P.J.; Vercher, E.; Martinez-Andreu, A. Isobaric Vapor−Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate at 100 kPa. J. Chem. Eng. Data, 2007, 52, 915-920.

    Perez-Salado Kamps, A.; Tuma, D.; Xia, J.; Maurer, G. Solubility of CO2 in the Ionic Liquid [Bmim][PF6]. J. Chem. Eng. Data, 2003, 48, 746-749.

    Parvulescu, V.I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev., 2007, 107, 2615-2665.

    Papaiconomou, N.; Yakelis, N.; Salminen, J.; Bergman, R.; Prausnitz, J.M. Synthesis and Properties of Seven Ionic Liquids Containing 1-Methyl-3-Octylimidazolium or 1-Butyl-4-Methylpyridinium Cations. J. Chem. Eng. Data, 2006, 51, 1389-1393.

    Phillips, D.M.; Drummy, L.F.; Naik, R.R.; Long, H.C.D.; Fox, D.M.; Trulove, P.C. ; Mantz, R.A. Regenerated Silk Fiber Wet Spinning from an Ionic Liquid Solution. J. Mater. Chem., 2005, 15, 4206-4208.

    Pusey, M.L.; Paley, M.S.; Turner, M.B.; Rogers, R.D. Protein Crystallization Using Room Temperature Ionic Liquids. Crystal Growth & Design, 2007, 7, 787-793.

    Sadus, R.J. A Simplified Thermodynamic Perturbation Theory-Dimer Equation of State for Mixtures of Hard-Sphere Chains. Macromolecules, 1996, 29, 7212-7216.

    Sakaebe, H.; Matsumoto, H. N-Methyl-N-Propylpiperidinium Bis(trifluoromethanesulfonyl)Imide (PP13–TFSI) – Novel Electrolyte Base for Li Battery. Electrochem. Commun., 2003, 5, 594-598.

    Sanmamed, Y.A.; Gonzalez-Salgado, D.; Troncoso, J.; Romani, L.; Baylaucq, A.; Boned, C. Experimental Methodology for Precise Determination of Density of Rtils as a Function of Temperature and Pressure Using Vibrating Tube Densimeters. J. Chem. Thermodyn., 2010, 42, 553-563.

    Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Ionic Liquids as Hypergolic Fuels. Energy & Fuels, 2008, 22, 2871-2872.

    Schotte, W. Vapor-Liquid Equilibrium Calculations for Polymer Solutions. Ind. Eng. Chem., Process Des. Dev., 1982, 21, 289-296.

    Seddon, K.R. Room-Temperature Ionic Liquids - Neoteric Solvents for Clean Catalysis. Kinet. Catal., 1996, 37, 693-697.

    Seddon, K.R. Ionic Liquids for Clean Technology. J. Chem. Technol. Biotechnol., 1997, 68, 351-356.

    Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun., 2001, 2399-2407.

    Smiglak, M.; Reichert, W.M.; Holbrey, J.D.; Wilkes, J.S.; Sun, L.; Thrasher, J.S.; Kirichenko, K.; Singh, S.; Katritzky, A.R. ; Rogers, R.D. Combustible Ionic Liquids by Design: Is Laboratory Safety Another Ionic Liquid Myth? Chem. Commun., 2006, 2554-2556.

    Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. J. Phys. Chem. B, 2004, 108, 16593-16600.

    Tomé, L.I.N.; Carvalho, P.J.; Freire, M.G.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P.; Gardas, R.L. Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data, 2008, 53, 1914-1921.

    Vargaftik, N.B. (1975). Tables on the Thermodynamical Properties of Liquids and Gases. Washington, DC, Hemisphere.

    Wang, T.; Peng, C.; Liu, H.; Hu, Y. Description of the PVT Behavior of Ionic Liquids and the Solubility of Gases in Ionic Liquids Using an Equation of State. Fluid Phase Equilib., 2006, 250, 150-157.

    Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 1999, 99, 2071-2084.

    Westerholt, A.; Liebert, V.; Gmehling, J. Influence of Ionic Liquids on the Separation Factor of Three Standard Separation Problems. Fluid Phase Equilib., 2009, 280, 56-60.

    Widowati, E.; Lee, M.-J. PVT Properties for Binary Ionic Liquids of 1-Methyl-1-Propylpiperidinium Bis(trifluoromethylsulfonyl)Imide with Anisole or Acetophenone at Pressures up to 50 Mpa. J. Chem. Thermodyn., 2012, 49, 54-61.

    Wilkes, J.S. Properties of Ionic Liquid Solvents for Catalysis. J. Mol. Catal. A: Chem., 2004, 214, 11-17.

    Xiao, C.; Zeng, X. In Situ Eqcm Evaluation of the Reaction between Carbon Dioxide and Electrogenerated Superoxide in Ionic Liquids. J. Electrochem. Soc., 2013, 160, H749-H756.

    Zafarani-Moattar, M.T.; Shekaari, H. Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-Methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T = (298.15 to 318.15) K. J. Chem. Eng. Data, 2005, 50, 1694-1699.

    Zhou, Q.; Henderson, W.A.; Appetecchi, G.B.; Montanino, M.; Passerini, S. Physical and Electrochemical Properties of N-Alkyl-N-Methylpyrrolidinium Bis(fluorosulfonyl)Imide Ionic Liquids: PY13FSI and PY14FSI J. Phys. Chem. B, 2008, 112, 13577-13580.

    QR CODE