簡易檢索 / 詳目顯示

研究生: 廖子漢
Zi-Han Liao
論文名稱: 融合有酪氨酸胜肽之Dispersin B於材料表面固定化用以 抗生物膜之研究
Tyrosine-tag Fused Dispersin B Coating for Antibiofilm Application
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 抗生物膜酪胺酸酶Dispersin B
外文關鍵詞: Antibiofilm, Tyrosinase, Dispersin B
相關次數: 點閱:184下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

葡萄球菌S. aureus及S. epidermidis是經常造成醫院內及傷口感染之主要細菌之一,其易形成生物膜於人體醫療置入裝置表面,為引起臨床各類急性及慢性感染之主因。細菌形成生物膜後將自身包埋在由蛋白質、多醣和細胞外DNA(eDNA)所組成的細胞外基質(extracellular polymeric substances, EPS)中,保護細菌抵抗外在不利生長的環境及外物攻擊如抗生素等。本論文將利用Dispersin B(DspB),其具有糖苷糖水解酶(glycosyl hydrolases)的功能,能夠將EPS中的多醣水解,有效水解形成表皮葡萄球菌(S. epidermidis)生物膜之多醣類Poly--1,6-N-acetyl-D-glucosamine(PNAG),使包埋在生物膜中的細菌能夠釋放出來,受天然貽貝足蛋白(mussel foot protein, mfp)其蛋白富含多巴(dihydroxy phenylalanine, DOPA)能夠輕易黏附於各類表面的啟發,本論文設計帶有6xTyr-tag之DspB融合蛋白,利用酪氨酸酶催化序列中酪胺酸形成多巴,將材料浸泡於溶液中,利用6xDopa基團於玻片表面上固定化DspB,可實際應用於抑制生物膜之形成。
融合6xTyr-tag後之DspB於表達時會增加DspB之不可溶性,而將6xTyr-tag融合於DspB序列之C端時會降低DspB的活性,帶有銀離子結合胜肽AgBP2之DspB融合蛋白分散S. epidermidis生物膜效果較佳,因此也使用AgBP2-DspB來探討6xTyr融合對其表面固定化之效果,再經酪氨酸酶催化後6xTyr會形成6xDopa能將DspB融合蛋白固定化於表面,其中AgBP2-DspB、6Y-AgBP2-DspB及DspB-6Y擁有較高固定化量,與未經處理之表面生物膜厚度相比可分別減少43%、34%及24%,而總螢光強度則減少65.3%、53.3%及51.9%,顯示固定化後帶有DspB之表面擁有抑制S. epidermidis形成生物膜之能力。


Bacterial strain Staphylococci frequently causes biofilm-associated infections in human body. In the biofilm formed by Staphylococcal, bacterial cells are embedded in an extracellular matrix composed of proteins, polysaccharides and extracellular DNA (eDNA) that protect the cells from killing by most of antimicrobial agents employed. Poly--1,6-N-acetyl-D-glucosamine (PNAG) was found to be the major polysaccharide in the matrix of S. epidermidis biofilm. The biofilm can be effectively eradicated, if PNAG structure were hydrolyzed to expose the cells to antimicrobial agents. Dispersin B (DspB), a family 20 -hexosaminidase, is known for its high activity to cleave PNAG. Mussel foot proteins (mfps), containing many dihydroxy phenylalanine (DOPA) residues in its structure was found can adhere strongly on various surfaces.
In this work, oligoTyr residues were fused to DspB and transformed into oligoDOPA by tyrosinase for the purpose of facile immobilization of DspB on various surface to prevent biofilm formation. A synthetic gene encoding DspB of Aggregatibacter actinomycetemcomitans with 6xTyr fusion was expressed in Escherichia coli. The 6xTyr-tag fusion, however, was found to induce the inclusion body formation of the target protein. The activity of DspB against PNAG was enhanced when a silver binding peptide was fused to the N-terminal of DspB (AgBP2-DspB、6Y-AgBP2-DspB). 6xTyr fused DspB demonstrated a better surface immobilization only after tyrosinase was employed to transform 6xTyr into 6xDopa. The DspB fusion protein AgBP2-DspB along with 6xDopa modified DspB 6Y-AgBP2-DspB and DspB-6Y could be easily immobilized on glass slide and able to reduce 43%, 34%, and 24% of S. epidermidis biofilm thickness respectively.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的與內容 4 第二章 文獻回顧 5 2.1 生物膜(Biofilm) 5 2.2 生物膜之形成(The Process of Biofilm Development) 6 2.3 抗生物膜策略 (Antibiofilm Strategies) 8 2.4 DispersinB 10 2.5 黏性蛋白(Adhesives protein) 12 第三章 實驗材料與方法 17 3.1 實驗流程 17 3.2 實驗材料 17 3.2.1 生物膜之基材 17 3.2.2 菌株 17 3.2.3 質體 17 3.3 實驗方法 18 3.3.1 各表達質體之建構 18 3.3.1.1 質體DNA純化 28 3.3.1.2 聚合酶連鎖反應(Polymerase chain reaction, PCR) 28 3.3.1.3 Annealing oligonucleotides 29 3.3.1.4 DNA電泳 (DNA Electrophoresis ) 30 3.3.1.5 DNA之膠體純化 30 3.3.1.6 限制酶酶切反應(restriction enzyme digestion) 31 3.3.1.7 DNA clean up 31 3.3.1.8 DNA接合反應(ligation) 32 3.3.1.9 轉形(transformation) 32 3.3.1.10 篩選重組DNA 32 3.3.1.11 重組蛋白之表達 33 3.3.2 蛋白質濃度分析 34 3.3.3 蛋白質電泳分析 36 3.3.4 重組蛋白之活性分析 38 3.3.5 酵素之穩定性測定 39 3.3.6 Nitro blue tetrazolium(NBT) staining assay 40 3.3.7 生物膜之形成 40 3.3.7.1 生物膜形成基材之清洗 40 3.3.7.2 生物膜之培養 40 3.3.7.3 生物膜形成之定量分析 41 3.3.7.4 固定化酵素於表面並抑制生物膜形成之測試 41 3.4 實驗藥品與酵素 42 3.5 溶液配製 44 3.6 實驗儀器與設備 47 第四章 結果與討論 48 4.1 Dispersin B表達質體之建構、表達及純化 48 4.1.1 DspB-6Y質體之建構、表達及純化 48 4.1.2 6Y-AgBP2-DspB之質體建構、表達及純化 50 4.1.3 6Y-DspB之質體建構、表達及純化 53 4.1.4 6Y- AgGFP之質體建構、表達及純化 55 4.1.5 pH和溫度對DspB融合蛋白活性影響 61 4.2 鏈球菌生物膜之培養 65 4.3 DispersinB融合蛋白去除葡萄球菌生物膜 65 4.4 DispersinB及其融合蛋白抑制S. epidermidis生物膜形成 67 4.4.1 Nitro blue tetrazolium(NBT) staining assay 67 4.4.2 酪胺酸酶催化(tyrosinase catalysis) 68 第五章 結論 77 第六章 參考文獻 78

Agarwal, A., & Jain, A. (2013). Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci. The Indian Journal of Medical Research, 138(2), 262-266.
Arora, A., Fosfuri, A., & Gambardella, A. (2004). Markets for Technology: The Economics of Innovation and Corporate Strategy (Vol. 1): The MIT Press.
Beuchat, L. R. (2002). Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes and Infection, 4(4), 413-423. doi:https://doi.org/10.1016/S1286-4579(02)01555-1
Brooks, J. L., & Jefferson, K. K. (2012). Staphylococcal Biofilms: Quest for the Magic Bullet. In S. Sariaslani & G. M. Gadd (Eds.), Advances in Applied Microbiology, Vol 81 (Vol. 81, pp. 63-87).
Chen, K.-J. (2017). Recombinant Fusion Enzymes for Staphylococcal Biofilm Eradication.
Coetser, S. E., & Cloete, T. E. (2005). Biofouling and Biocorrosion in Industrial Water Systems. Critical Reviews in Microbiology, 31(4), 213-232. doi:10.1080/10408410500304074
Craigen, B., Dashiff, A., & Kadouri, D. E. (2011). The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms. The Open Microbiology Journal, 5, 21-31. doi:10.2174/1874285801105010021
Demirel, Y. K., Uzun, D., Zhang, Y., Fang, H.-C., Day, A. H., & Turan, O. (2017). Effect of barnacle fouling on ship resistance and powering. Biofouling, 33(10), 819-834. doi:10.1080/08927014.2017.1373279
Dobretsov, S., Dahms, H.-U., & Qian, P.-Y. (2006). Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling, 22(1), 43-54. doi:10.1080/08927010500504784
Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology, 17(2), 66-72. doi:https://doi.org/10.1016/j.tim.2008.11.002
Egland Kristi, A., & Greenberg, E. P. (2002). Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Molecular Microbiology, 31(4), 1197-1204. doi:10.1046/j.1365-2958.1999.01261.x
Epstein, A. K., Pokroy, B., Seminara, A., & Aizenberg, J. (2011). Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proceedings of the National Academy of Sciences, 108(3), 995.
Eshed, M., Lellouche, J., Matalon, S., Gedanken, A., & Banin, E. (2012). Sonochemical Coatings of ZnO and CuO Nanoparticles Inhibit Streptococcus mutans Biofilm Formation on Teeth Model. Langmuir, 28(33), 12288-12295. doi:10.1021/la301432a
Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623. doi:10.1038/nrmicro2415
Forooshani, P. K., & Lee, B. P. (2017). Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science Part A: Polymer Chemistry, 55(1), 9-33. doi:10.1002/pola.28368
González, J. E., & Keshavan, N. D. (2006). Messing with Bacterial Quorum Sensing. Microbiology and Molecular Biology Reviews, 70(4), 859-875. doi:10.1128/MMBR.00002-06
Hentzer, M., & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. Journal of Clinical Investigation, 112(9), 1300-1307. doi:10.1172/JCI200320074
Hong, S., Na Yun, S., Choi, S., Song In, T., Kim Woo, Y., & Lee, H. (2012). Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 22(22), 4711-4717. doi:10.1002/adfm.201201156
Izano, E. A., Amarante, M. A., Kher, W. B., & Kaplan, J. B. (2008). Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Applied and Environmental Microbiology, 74(2), 470-476. doi:10.1128/AEM.02073-07
Izano, E. A., Sadovskaya, I., Vinogradov, E., Mulks, M. H., Velliyagounder, K., Ragunath, C., . . . Kaplan, J. B. (2007). Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microbial pathogenesis, 43(1), 1-9. doi:10.1016/j.micpath.2007.02.004
Izano, E. A., Wang, H., Ragunath, C., Ramasubbu, N., & Kaplan, J. B. (2007). Detachment and Killing of Aggregatibacter actinomycetemcomitans Biofilms by Dispersin B and SDS. Journal of Dental Research, 86(7), 618-622. doi:10.1177/154405910708600707
J. HERBERT WAITE, M. L. T. ( 1981). Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 212(4498), 1038-1040. doi:10.1126/science.212.4498.1038
James Walker, S. S., Jana Jass. (2000). Biofilms and biofouling. In S. S. James Walker, Jana Jass (Ed.), Industrial Biofouling – Detection, Prevention and Control (pp. 1–12).
Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiol Lett, 236(2), 163-173. doi:10.1016/j.femsle.2004.06.005
Kaplan, J. B., & Fine, D. H. (2002). Biofilm Dispersal of Neisseria subflava and Other Phylogenetically Diverse Oral Bacteria. Applied and Environmental Microbiology, 68(10), 4943-4950. doi:10.1128/AEM.68.10.4943-4950.2002
Kaplan, J. B., Ragunath, C., Ramasubbu, N., & Fine, D. H. (2003). Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity. Journal of Bacteriology, 185(16), 4693-4698. doi:10.1128/JB.185.16.4693-4698.2003
Kaplan, J. B., Velliyagounder, K., Ragunath, C., Rohde, H., Mack, D., Knobloch, J. K. M., & Ramasubbu, N. (2004). Genes Involved in the Synthesis and Degradation of Matrix Polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae Biofilms. Journal of Bacteriology, 186(24), 8213-8220. doi:10.1128/JB.186.24.8213-8220.2004
Kim, Y. J., & Uyama, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences CMLS, 62(15), 1707-1723. doi:10.1007/s00018-005-5054-y
Lee, B. P., Messersmith, P. B., Israelachvili, J. N., & Waite, J. H. (2011). Mussel-Inspired Adhesives and Coatings. Annual review of materials research, 41, 99-132. doi:10.1146/annurev-matsci-062910-100429
Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science (New York, N.Y.), 318(5849), 426-430. doi:10.1126/science.1147241
Lee, H., Scherer, N. F., & Messersmith, P. B. (2006a). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999-13003. doi:10.1073/pnas.0605552103
Lee, H., Scherer, N. F., & Messersmith, P. B. (2006b). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999.
Lerum, M. F. Z., & Chen, W. (2011). Surface-Initiated Ring-Opening Metathesis Polymerization in the Vapor Phase: An Efficient Method for Grafting Cyclic Olefins with Low Strain Energies. Langmuir, 27(9), 5403-5409. doi:10.1021/la2002892
Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiology spectrum, 3(3), 10.1128/microbiolspec.MB-0011-2014. doi:10.1128/microbiolspec.MB-0011-2014
Marumo, K., & Waite, J. H. (1986). Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 872(1), 98-103. doi:https://doi.org/10.1016/0167-4838(86)90152-4
Maukonen, J., Mättö, J., Wirtanen, G., Raaska, L., Mattila-Sandholm, T., & Saarela, M. (2003). Methodologies for the characterization of microbes in industrial environments: a review. Journal of Industrial Microbiology and Biotechnology, 30(6), 327-356. doi:10.1007/s10295-003-0056-y
Miller, M. B., & Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annual Review of Microbiology, 55(1), 165-199. doi:10.1146/annurev.micro.55.1.165
Otto, M. (2008). Staphylococcal Biofilms. Current topics in microbiology and immunology, 322, 207-228.
Rasmussen, T. B., Manefield, M., Andersen, J. B., Eberl, L., Anthoni, U., Christophersen, C., . . . Givskov, M. (2000). How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology, 146(12), 3237-3244. doi:doi:10.1099/00221287-146-12-3237
RO.D.ney, M. D. ( 2001). Biofilms and Device-Associated Infections. Emerging Infectious Diseases journal, 7.
S.Stewart, P. ( 2002). Mechanisms of antibiotic resistance in bacterial biofilms. Mechanisms of antibiotic resistance in bacterial biofilms(2).
Sihorkar, V., & Vyas, S. P. (2001). Biofilm Consortia on Biomedical and Biological Surfaces: Delivery and Targeting Strategies. Pharmaceutical Research, 18(9), 1247-1254. doi:10.1023/A:1013073508318
Tetz, G. V., Artemenko, N. K., & Tetz, V. V. (2009). Effect of DNase and Antibiotics on Biofilm Characteristics. Antimicrobial Agents and Chemotherapy, 53(3), 1204-1209. doi:10.1128/AAC.00471-08
Treter, J., & Macedo, A. J. (2011). Catheters: a suitable surface for biofilm formation (A. Mendez-Vilas Ed. Vol. Vol. 2 ): Formatex Research Center.
Verran, J. (2002). Biofouling in Food Processing: Biofilm or Biotransfer Potential? Food and Bioproducts Processing, 80(4), 292-298. doi:https://doi.org/10.1205/096030802321154808
Zhu, L.-P., Yu, J.-Z., Xu, Y.-Y., Xi, Z.-Y., & Zhu, B.-K. (2009). Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization. Colloids and Surfaces B: Biointerfaces, 69(1), 152-155. doi:https://doi.org/10.1016/j.colsurfb.2008.11.011
Zobell, C. E. (1943). The Effect of Solid Surfaces upon Bacterial Activity. Journal of Bacteriology, 46(1), 39-56.

QR CODE