簡易檢索 / 詳目顯示

研究生: 吳慧璇
Sabrina
論文名稱: ε-聚賴氨酸做為抗生物膜試劑的可行性研究
Feasibility Study of ε-Polylysine as Antibiofilm Agent
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: ε-聚賴氨酸抗生物膜
外文關鍵詞: ε-polylysine, antibiofilm
相關次數: 點閱:204下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物膜是微生物聚合後附著在表面上形成的膜,其可能為人工或生物合成。在生物醫學領域中,醫療設備和材料會形成生物膜 一直是個麻煩問題。外多醣(EPS) 基質緊緊鍵結在生物膜上以保護生物膜不受環境影響,並使其難以藉由常見的抗生素分解。最近有研究顯示有數種 D-型氨基酸可以有效地預防數種細菌形成生物膜。近年來,發現薑黃素可有效的防止微生物形成生物膜。此外,epsilon-聚-L-賴氨酸 (ε-PL) 是食品級抗菌劑且具有良好的細胞相容性。PNVP其抗玷污的性質 也是眾所皆知的。
      在本研究中,首先發酵產生ε-PL並確認其具有抗菌能力。以和ε-PL、 薑黃素和 D-氨基酸結合之PNVP當作抗生物膜劑, 塗在玻璃表面上研究它們抗生物膜 能力。以金黃葡萄球菌在靜態培養下形成生物膜。
      饋料批式發酵小白鏈黴菌7天可以生產16.5 g L-1的ε-PL。ε-PL對金黃葡萄球菌的最低抑菌濃度為2 g L-1。和乾淨的玻璃相比,PNVP塗在玻璃表面上能夠減少生物膜生長。將ε-PL固定在有PNVP塗佈的玻璃表面上,可增強抗生物膜能力。有無加入抗生物膜劑,懸浮細胞量無明顯差異,表示ε-PL可減少生物膜生長但沒有抑制懸浮細胞生長。


    Biofilm is a layer of of microorganisms aggregation which adhere to a surface, whether synthetic or biological one. Biofilm formation has been a troublesome problem for medical devices and materials in biomedical fields. Its tightly bonded exopolysaccharide (EPS) matrix protects the biofilm from environment and makes it hard to be disassembled by conventional antibiotic treatment. In the presence of several D-amino acids, recently it have been reported that the preformed biofilm of several bacterial strains can be eradicated effectively. Recently, curcumin was found to be an effective anti-quorum sensing compound which can prevent microorganisms from assembly into biofilm formation. In addition, epsilon-poly-L-lysine (ε-PL) a food-grade antimicrobial agent has a good cytocompatibility. PNVP is also well known for its antifouling property.
    In this work, ε-PL was first produced by fermentation process and its antimicrobial activity was characterized. The combination of ε-PL, curcumin and D-amino acids as antibiofilm agent in PNVP coated surface layer were employed to study their anti Staphylococcus aureus biofilm formed biofilm under static condition.
    ε-PL of 16.5 g L-1 could be produced by Streptomyces albulus in a 7 days fed-batch fermentation. The minimum inhibitory concentration of ε-PL towards S.sureus is 2 g L-1. PNVP coated surface was able to reduce biofilm growth compare to glass substrate. By immobilizing ε-PL on PNVP coated surface, the antibiofilm activity was enhanced. The planktonic cells amount showed insignificant difference with and without antibiofilm agent treatment, implied ε-PL impaired biofilm growth without inhibiting planktonic cells growth.

    ABSTRACT 中文摘要 ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1.1. Research Background 1.2. Research Objectives CHAPTER 2 LITERATURE REVIEW 2.1 Biofouling and Biofilm 2.2 Antibiofouling compound 2.3 Antibiofilm compound 2.3.1 D-Amino acid 2.3.2 Norpsermidine 2.3.3 Curcumin 2.4 Biofilm assay 2.5 Epsilon-polylysine 2.5.1 Physisochemical properties 2.5.2 Assay 2.5.3 Antimicrobial activity 2.5.4 Application 2.6 Poly(N-vinylpyrolidone) 2.7 Polydopamine CHAPTER 3 MATERIAL AND METHOD 3.1. Material 3.1.1. Microbial stain 3.1.2. Experiment chemical 3.1.3. Experiment culture medium 3.1.4. Experiment reagent 3.1.5. Experiment apparatus 3.2. Method 3.2.1. ε-PL fermentation 3.2.2. ε-PL assay 3.2.3. ε-PL Minimum Inhibitory Concentration 3.2.4. Biofilm growth 3.2.5. Crystal violet staining 3.2.6. PNVP coating 3.2.7. Polydopamine coating 3.2.8. Antibiofilm agent dip coating 3.2.9. Confocal microscopy using LIVE/DEAD Baclight Bacterial Viability Kits CHAPTER 4 RESULT AND DISCUSSION 4.1. ε-Polylysine production 4.2. ε-Polylysine assay 4.2.1. Blue plate assay 4.2.2. Colorimetric assay 4.2.3. HPLC (High Performance Liquid Chromatography) and IPC (Ion Pair Chromatography) 4.2.4. SDS-PAGE 4.3. ε-Polylysine antimicrobial activity 4.4. Biofilm formation CHAPTER 5 CONCLUSIONS 5.1. ε-Polylysine production and antimicrobial activity 5.2. ε-Polylysine assay 5.3. ε-Polylysine antibiofilm activity REFERENCES

    Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother, 48 Suppl 1, 5-16.
    Babic, M., Horak, D., Trchova, M., Jendelova, P., Glogarova, K., Lesny, P., . . . Sykova, E. (2008). Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem, 19(3), 740-750. doi: 10.1021/bc700410z
    Banerjee, Indrani, Pangule, Ravindra C., & Kane, Ravi S. (2011). Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 23(6), 690-718. doi: 10.1002/adma.201001215
    Bennett, E.S., & Weissman, B.A. (2005). Clinical Contact Lens Practice: Lippincott Williams & Wilkins.
    Borlee, B. R., Goldman, A. D., Murakami, K., Samudrala, R., Wozniak, D. J., & Parsek, M. R. (2010). Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol, 75(4), 827-842. doi: 10.1111/j.1365-2958.2009.06991.x
    Caiazza, N. C., & O'Toole, G. A. (2004). SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 186(14), 4476-4485. doi: Doi 10.1128/Jb.186.14.4476-4485.2004
    Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol, 22(6), 996-1006.
    Copper in Antifouling.). from http://www.copperantifouling.com
    Cunliffe, D., Smart, C. A., Alexander, C., & Vulfson, E. N. (1999). Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol, 65(11), 4995-5002.
    Cunningham, Alfred B., Lennox, John E., & Ross, Rockford J. (2011). Biofilms: The Hypertextbook. from http://www.hypertextbookshop.com/biofilmbook/v004/r003/
    Curcumin. (2011). from http://en.wikipedia.org/wiki/Curcumin
    Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2012). Elucidating the Structure of Poly(dopamine). Langmuir, 28(15), 6428-6435. doi: Doi 10.1021/La204831b
    Evans, S. M., Leksono, T., & McKinnell, P. D. (1995). Tributyltin pollution: A diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Marine Pollution Bulletin, 30(1), 14-21. doi: http://dx.doi.org/10.1016/0025-326X(94)00181-8
    Flemming, Hans-Curt. (2009). Why Microorganisms Live in Biofilms and the Problem of Biofouling. In H.-C. Flemming, P. S. Murthy, R. Venkatesan & K. Cooksey (Eds.), Marine and Industrial Biofouling (Vol. 4, pp. 3-12): Springer Berlin Heidelberg.
    Goor, Gustaaf, Glenneberg, Jurgen, & Jacobi, Sylvia. (2000). Hydrogen Peroxide Ullmann's Encyclopedia of Industrial Chemistry: Wiley-VCH Verlag GmbH & Co. KGaA.
    Ham, Hyun Ok, Liu, Zhongqiang, Lau, K. H. Aaron, Lee, Haeshin, & Messersmith, Phillip B. (2011). Facile DNA Immobilization on Surfaces through a Catecholamine Polymer. Angewandte Chemie International Edition, 50(3), 732-736. doi: 10.1002/anie.201005001
    Hamana, K., Aizaki, T., Arai, E., Saito, A., Uchikata, K., & Ohnishi, H. (2004). Distribution of norspermidine as a cellular polyamine within micro green algae including non-photosynthetic achlorophyllous Polytoma, Polytomella, Prototheca and Helicosporidium. J Gen Appl Microbiol, 50(5), 289-295.
    Hamana, K., & Matsuzaki, S. (1982). Widespread occurrence of norspermidine and norspermine in eukaryotic algae. J Biochem, 91(4), 1321-1328.
    Hamana, K., Niitsu, M., & Samejima, K. (1998). Unusual polyamines in aquatic plants: the occurrence of homospermidine, norspermidine, thermospermine, norspermine, aminopropylhomospermidine, bis(aminopropyl)ethanediamine, and methylspermidine. Canadian Journal of Botany-Revue Canadienne De Botanique, 76(1), 130-133.
    Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev, 60(15), 1638-1649. doi: 10.1016/j.addr.2008.08.002
    Higuchi, A., Shirano, K., Harashima, M., Yoon, B. O., Hara, M., Hattori, M., & Imamura, K. (2002). Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials, 23(13), 2659-2666.
    Hiraki, J. (2000). ε-Polylysine, its development and utilization. Fine Chem, 29(1), 18-25.
    Hirohara, H., Saimura, M., Takehara, M., Miyamoto, M., & Ikezaki, A. (2007). Substantially monodispersed poly(epsilon-L-lysine)s frequently occurred in newly isolated strains of Streptomyces sp. Appl Microbiol Biotechnol, 76(5), 1009-1016. doi: 10.1007/s00253-007-1082-x
    Hoang, T., Jorgensen, M. G., Keim, R. G., Pattison, A. M., & Slots, J. (2003). Povidone-iodine as a periodontal pocket disinfectant. Journal of Periodontal Research, 38(3), 311-317.
    Hochbaum, A. I., Kolodkin-Gal, I., Foulston, L., Kolter, R., Aizenberg, J., & Losick, R. (2011). Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol, 193(20), 5616-5622. doi: 10.1128/JB.05534-11
    Hoiby, Niels, Bjarnsholt, Thomas, Givskov, Michael, Molin, Soren, & Ciofu, Oana. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332. doi: http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011
    Hong, Seonki, Na, Yun Suk, Choi, Sunghwan, Song, In Taek, Kim, Woo Youn, & Lee, Haeshin. (2012). Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 22(22), 4711-4717. doi: 10.1002/adfm.201201156
    Hu, H. Y., Yu, B., Ye, Q., Gu, Y. S., & Zhou, F. (2010). Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon, 48(8), 2347-2353. doi: DOI 10.1016/j.carbon.2010.03.014
    IMO, International Maritime Organization. (2002). Focus on IMO - Anti-fouling Systems. www.imo.org
    Institution, Woods Hole Oceanographic. (1952). The History and Prevention of Fouling. Unites States: Unites States Navy Dept. Bureau of Ships.
    Itzhaki, R. F. (1972). Colorimetric method for estimating polylysine and polyarginine. Anal Biochem, 50(2), 569-574.
    Kahar, Prihardi, Iwata, Toshiharu, Hiraki, Jun, Park, Enoch Y., & Okabe, Mitsuyasu. (2001). Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. Journal of Bioscience and Bioengineering, 91(2), 190-194. doi: http://dx.doi.org/10.1016/S1389-1723(01)80064-5
    Klahre, Joachim, & Flemming, H. C. (2000). Monitoring of biofouling in papermill process waters. Water Research, 34(14), 3657-3665. doi: http://dx.doi.org/10.1016/S0043-1354(00)00094-4
    Kolodkin-Gal, I., Cao, S., Chai, L., Bottcher, T., Kolter, R., Clardy, J., & Losick, R. (2012). A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell, 149(3), 684-692. doi: 10.1016/j.cell.2012.02.055
    Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., & Losick, R. (2010). D-amino acids trigger biofilm disassembly. Science, 328(5978), 627-629. doi: 10.1126/science.1188628
    Kramer, S. A. (1999). Effect of povidone-iodine on wound healing: a review. J Vasc Nurs, 17(1), 17-23.
    Kristensen, J. B., Olsen, S. M., Laursen, B. S., Kragh, K. M., Poulsen, C. H., Besenbacher, F., & Meyer, R. L. (2009). Enzymatic generation of hydrogen peroxide shows promising antifouling effect. Biofouling, 26(2), 141-153. doi: 10.1080/08927010903384271
    Kristensen, Jakob Broberg, Meyer, Rikke Louise, Poulsen, Charlotte Horsmans, Kragh, Karsten Matthias, Besenbacher, Flemming, & Laursen, Brian Sogaard. (2010). Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chemistry, 12(3), 387. doi: 10.1039/b913772f
    Ku, Sook Hee, Lee, Joon Seok, & Park, Chan Beum. (2010). Spatial Control of Cell Adhesion and Patterning through Mussel-Inspired Surface Modification by Polydopamine. Langmuir, 26(19), 15104-15108. doi: 10.1021/la102825p
    Lauderdale, Katherine J., Malone, Cheryl L., Boles, Blaise R., Morcuende, Jose, & Horswill, Alexander R. (2010). Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. Journal of Orthopaedic Research, 28(1), 55-61. doi: 10.1002/jor.20943
    Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426-430. doi: 10.1126/science.1147241
    Lee, Haeshin, Rho, Junsung, & Messersmith, Phillip B. (2009). Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings. Advanced Materials, 21(4), 431-434. doi: 10.1002/adma.200801222
    Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, M. A., & Michael, A. J. (2009). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem, 284(15), 9899-9907. doi: 10.1074/jbc.M900110200
    Lens, P. (2003). Biofilms in Medicine, Industry and Environmental Biotechnology: Characteristics, Analysis and Control: IWA Publishing.
    Leone, G., Consumi, M., Greco, G., Bonechi, C., Lamponi, S., Rossi, C., & Magnani, A. (2011). A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility. J Biomed Mater Res B Appl Biomater, 97(2), 278-288. doi: 10.1002/jbm.b.31813
    Luczak, T. (2008). Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta, 53(19), 5725-5731. doi: DOI 10.1016/j.electacta.2008.03.052
    McCloskey, B. D., Park, H. B., Ju, H., Rowe, B. W., Miller, D. J., Chun, B. J., . . . Freeman, B. D. (2010). Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 51(15), 3472-3485. doi: DOI 10.1016/j.polymer.2010.05.008
    Meesters, K. P. H., Van Groenestijn, J. W., & Gerritse, J. (2003). Biofouling reduction in recirculating cooling systems through biofiltration of process water. Water Research, 37(3), 525-532. doi: http://dx.doi.org/10.1016/S0043-1354(02)00354-8
    Merritt, J. H., Kadouri, D. E., & O'Toole, G. A. (2005). Growing and analyzing static biofilms. Curr Protoc Microbiol, Chapter 1, Unit 1B 1. doi: 10.1002/9780471729259.mc01b01s00
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165-199. doi: DOI 10.1146/annurev.micro.55.1.165
    Minigo, G., Scholzen, A., Tang, C. K., Hanley, J. C., Kalkanidis, M., Pietersz, G. A., . . . Plebanski, M. (2007). Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine, 25(7), 1316-1327. doi: 10.1016/j.vaccine.2006.09.086
    Nishikawa, M., & Ogawa, K. (2002). Distribution of microbes producing antimicrobial epsilon-poly-L-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol, 68(7), 3575-3581.
    O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). Genetic approaches to study of biofilms. Methods Enzymol, 310, 91-109.
    O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49-79. doi: 10.1146/annurev.micro.54.1.49
    Otto, M. (2008). Staphylococcal biofilms. Curr Top Microbiol Immunol, 322, 207-228.
    Packiavathy, Issac Abraham Sybiya Vasantha, Priya, Selvam, Pandian, Shunmugiah Karutha, & Ravi, Arumugam Veera. Inhibition of biofilm development of uropathogens by curcumin – An anti-quorum sensing agent from Curcuma longa. Food Chemistry(0). doi: http://dx.doi.org/10.1016/j.foodchem.2012.08.002
    Peng, H. P., Liang, R. P., Zhang, L., & Qiu, J. D. (2012). Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe(3)O(4) magnetic bionanoparticles for glucose sensor. Biosens Bioelectron, 42C, 293-299. doi: 10.1016/j.bios.2012.10.074
    Polylysine. Wikipedia.
    Prakash, N. J., Bowlin, T. L., Davis, G. F., Sunkara, P. S., & Sjoerdsma, A. (1988). Antitumor activity of norspermidine, a structural homologue of the natural polyamine spermidine. Anticancer Res, 8(4), 563-568.
    Proline.). from http://en.wikipedia.org/wiki/Proline
    Rahn, R. (1993). Review presentation on povidone-iodine antisepsis in the oral cavity. Postgrad Med J, 69 Suppl 3, S4-9.
    Ravin, Herbert A., Seligman, Arnold M., & Fine, Jacob. (1952). Polyvinyl Pyrrolidone as a Plasma Expander. New England Journal of Medicine, 247(24), 921-929. doi: doi:10.1056/NEJM195212112472403
    Reimer, K., Vogt, P. M., Broegmann, B., Hauser, J., Rossbach, O., Kramer, A., . . . Fleischer, W. (2000). An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone-iodine liposome hydrogel. Dermatology, 201(3), 235-241. doi: 18494
    Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bull, 36(5), 347-355. doi: 10.1557/mrs.2011.65
    Robinson, B.V. (1990). PVP: A Critical Review of the Kinetics and Toxicology of Polyvinylprrolidone (povidone): Lewis Publishers.
    Rodriguez-Garay, B., Phillips, G. C., & Kuehn, G. D. (1989). Detection of Norspermidine and Norspermine in Medicago sativa L. (Alfalfa). Plant Physiol, 89(2), 525-529.
    Romero, D., & Kolter, R. (2011). Will biofilm disassembly agents make it to market? Trends Microbiol, 19(7), 304-306. doi: 10.1016/j.tim.2011.03.003
    S, Abarzua, & S, Jakubowski. (1995). Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Marine Ecology Progress Series, 123, 301-312. doi: 10.3354/meps123301
    Shen, W C, & Ryser, H J. (1981). Poly(L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin. Proceedings of the National Academy of Sciences, 78(12), 7589-7593.
    Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of epsilon-poly-L-lysine. J Antibiot (Tokyo), 37(11), 1449-1455.
    Shukla, Swet Chand, Singh, Amit, Pandey, Anand Kumar, & Mishra, Abha. (2012). Review on production and medical applications of ɛ-polylysine. Biochemical Engineering Journal, 65, 70-81. doi: 10.1016/j.bej.2012.04.001
    Shunmugaperumal, T. (2010). Biofilm Eradication and Prevention: A Pharmaceutical Approach to Medical Device Infections: Wiley.
    Stepanovic, S., Vukovic, D., Jezek, P., Pavlovic, M., & Svabic-Vlahovic, M. (2001). Influence of dynamic conditions on biofilm formation by staphylococci. Eur J Clin Microbiol Infect Dis, 20(7), 502-504.
    Sun, M. P., Su, Y. L., Mu, C. X., & Jiang, Z. Y. (2010). Improved Antifouling Property of PES Ultrafiltration Membranes Using Additive of Silica-PVP Nanocomposite. Industrial & Engineering Chemistry Research, 49(2), 790-796. doi: Doi 10.1021/Ie900560e
    Sunkara, P. S., Zwolshen, J. H., Prakash, N. J., & Bowlin, T. L. (1988). Mechanism of antitumor activity of norspermidine, a structural homologue of spermidine. Adv Exp Med Biol, 250, 707-716.
    Telford, A. M., James, M., Meagher, L., & Neto, C. (2010). Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces, 2(8), 2399-2408. doi: 10.1021/am100406j
    Wade, Leroy G. (2010). Organic Chemistry, 7/E (Vol. 7/E): Prentice Hall.
    Wetlaufer, D. B., & Stahmann, M. A. (1953). The interaction of methyl orange anions with lysine polypeptides. J Biol Chem, 203(1), 117-126.
    Wu, Zhaoqiang, Chen, Hong, Liu, Xiaoli, Zhang, Yanxia, Li, Dan, & Huang, He. (2009). Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 25(5), 2900-2906. doi: 10.1021/la8037523
    Yamamoto, S., Shinoda, S., & Makita, M. (1979). Occurrence of norspermidine in some species of genera Vibrio and Beneckea. Biochem Biophys Res Commun, 87(4), 1102-1108.
    Yebra, Diego Meseguer, Kiil, Soren, & Dam-Johansen, Kim. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104. doi: 10.1016/j.porgcoat.2003.06.001
    Yoshida, T., & Nagasawa, T. (2003). epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol, 62(1), 21-26. doi: 10.1007/s00253-003-1312-9
    Zhou, J., & Qi, X. (2011). Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity. Lett Appl Microbiol, 52(1), 76-83. doi: 10.1111/j.1472-765X.2010.02969.x
    Zhu, Shi-Guo, Xiang, Juan-Juan, Li, Xiao-Ling, Shen, Shou-Rong, Lu, Hong-bin, Zhou, Jie, . . . Li, Gui-Yuan. (2004). Poly(l-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnology and Applied Biochemistry, 39(2), 179-187. doi: 10.1042/BA20030077

    QR CODE