簡易檢索 / 詳目顯示

研究生: 呂仲宸
Zhong-Chen Lu
論文名稱: 矽晶片表面起始原子轉移自由基聚合圖案化聚甲基丙烯酸高分子刷-三明治結構之表面增強光學檢測抗原研究
Fabrication of Poly(Methacrylic acid) via Surface Initiated Atom Transfer Radical Polymerization on Silicon Substrate for Enhenced Optical Detection of Antigen with Sandwich Structure
指導教授: 陳建光
Jem-Kun Chen
口試委員: 賴君義
Juin-Yih Lai
郭紹偉
Shiao-Wei Kuo
黃智峯
Chih-Feng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 156
中文關鍵詞: 原子轉移自由基聚合法聚高分子刷三明治結構高分子繞射光柵微影製程
外文關鍵詞: Atom Transfer Radical Polymerization(ATRP), Polymer Brush, Antigen, Sandwich Structure, Anti-biofouling, Diffraction grating, Photolithography
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為設計一高分子材料以偵測目標中的鼠疫抗原(Antigen of Yersinia pestis)。基材為線/間距比率為1:1.5的圖案化光阻矽晶圓,其線寬為500 nm、600 nm、700 nm、800 nm的三維光柵。以此結構利用原子轉移自由基聚合(Atom Transfer Radical Polymerization, ATRP)製備甲基丙烯酸(Poly(sodium methacrylate),PMAS)的線型高分子刷,進行12、18、24、30小時的聚合成長。接著利用PMAAS末端有-COOH官能基,透過EDC/NHS的耦合Protein G與鼠疫F1抗原之單株抗體(Mouse-Anti-F1),進行鼠疫抗原抓取。由於檢驗原理是用雷射會因表面規律的微結構產生光柵繞射,對比微結構受到破壞所產生的能量散失進行偵測,但抗原的三維尺寸較小,對微結構的破壞有限,使的偵測受限。需額外建立起三明治結構以增強訊號。三明治結構由聚苯乙烯微球為基材,改質上Protein G與鼠疫F1抗原之多株抗體(Rabbit-Anti-F1)後與被晶片抓取之抗原做結合,達到破壞微結構,增強光學訊號之目的。
接著對於100 μg/mL-10 μg/mL做鼠疫抗原濃度靈敏度測試,並透過螢光顯微鏡觀察螢光佐證,結果顯示即使在鼠疫抗原濃度較高時,晶片所抓取之抗原對雷射繞射強度並無太大影響,而當聚苯乙烯微球與晶片表面抗原結合時,雷射繞射強度呈線性下降的趨勢,其線性範圍可達到濃度10 ng/ mL,而此濃度下螢光顯微鏡已無法發現鼠疫抗原的螢光存在,說明雷射檢測鼠疫桿菌的靈敏度較螢光顯微鏡來的高。說明利用雷射能量檢測鼠疫桿菌的靈敏度較螢光顯微鏡高。而線型500nm的圖案化高分子晶片對於不同濃度的鼠疫桿菌經過光學訊號放大後所作出的線性回歸之相關係數值為0.9589代表鼠疫桿菌濃度有95.89%的概率能以雷射解釋,期望利用此線性規律,能以雷射能量值快速得到抗原濃度,達到快速檢測抗原的作用,以此模型作為未來具前瞻發展性的快篩微縮基材,取代過去對抗原的檢測方式,發展為拋棄式(disposable)的快篩微縮晶片(Lab-on-a-chip)於抗原之檢測領域。


This study designed a polymer material to detect the antigen of Yersinia pestis. The substrate is a patterned photoresist silicon wafer with a line/pitch ratio of 1:1.5, a three-dimensional grating with 500 nm, 600 nm, 700 nm, and 800 nm. With this structure, a linear polymer brush of sodium methacrylate (PMAS) was prepared by atom transfer radical polymerization (ATRP), and polymerization growth was carried out for 12, 18, 24, and 30 hours. In order to capture the antigen,we use EDC/NHS coupling Protein G and the monoclonal antibody (Mouse-Anti-F1 Yp) to the the carboxylic acid group at PMAA,. Because the principle of detection is that the laser has grating diffraction due to the regular microstructures on the surface,and campare it to the energy loss caused by the destruction of the microstructure.But the three-dimensional size of the antigen is small, and the destruction to the microstructure is limited.Make detection unaccuracy. An additional sandwich structure is needed to construct to enhance the optical signal. The sandwich structure is made of polystyrene microspheres, modified with protein G and Polyclonal Antibody(Rabbit-anti-F1 Yp). Then combined with the antigen captured by the chip to destroy the microstructure and enhance the optical signal.
Then, 100 μg/mL-10 μg/mL was tested for the sensitivity of the antigen concentration, combine with fluorescent microscope. The results showed that even when the antigen concentration was high, the laser energy does not have much effect, and when the polystyrene microspheres are combined with the antigen on the surface of the chip, the laser diffraction intensity decreases linearly, and the linear range can reach 10 ng/mL. At this concentration, the fluorescence of antigen can no longer be observed. Indicating that the sensitivity of laser detection of antigen is higher than that of a fluorescent microscope. The 500nm patterned polymer chip for different concentrations of Yersinia pestis after optical signal enhancing has correlation coefficient value of 0.9589, representing 95.89% probability of antigem concentration can be explained by laser energy, which has great potential as an rapid screening techniques for detecting antigens.

摘要 III ABSTRACT V 致謝 VII 目錄 IX 圖目錄 XV 表目錄 XXI 緒論 1 1.1. 研究背景 1 1.2. 研究目的 3 2. 理論與文獻回顧 4 2.1. 高分子刷簡介 4 2.2. 自組裝單分子層 7 2.3. 原子轉移自由基聚合法 10 2.4. 液態除氣法 13 2.5. 智能型高分子 15 2.6. 微影製程 18 2.7. 晶圓蝕刻 19 2.8. 聚甲基丙烯酸(PMAA) 22 2.9. 共價鍵固定法(EDC/NHS reaction) 23 2.10. 重組蛋白與抗體 25 2.11. 光柵效應 25 2.12. 聚苯乙烯微球 28 2.12.1. 乳化聚合法 28 2.12.2. 無乳化劑乳化聚合法 31 2.12.3. 分散聚合法 34 2.12.4. 懸浮聚合法 34 2.13. 三明治免疫分析 35 2.14. Bio-Rad Protein Assay 36 3. 儀器簡介 38 3.1. 電漿蝕刻機(Plasma Machine) 38 3.2. 原子力顯微鏡 (Atomic Force Microscope, AFM) 40 3.3. 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 45 3.4. X射線光電能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 46 3.5. 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FT-IR) 49 3.6. 陣列雷射光束分析儀(BeamMic) 53 3.7. 接觸角 (Contact Angle, CA) 57 3.8. 動態光散射粒徑分析儀(Dynamic light scattering,DLS) 59 3.9. 表面電位分析儀(Zeta-potential) 60 4. 實驗流程與方法 62 4.1. 實驗流程圖 62 4.2. 實驗藥品 63 4.3. 實驗儀器 66 4.4. 實驗步驟 68 4.4.1. 微影製程製備圖案化光阻層 68 4.4.1.1. 表面預處理 68 4.4.1.2. 光阻塗佈 69 4.4.1.3. 軟烤 69 4.4.1.4. 曝光 69 4.4.1.5. 顯影 70 4.4.2. 圖案化矽晶片表面起始聚合高分子刷 70 4.4.2.1. 矽晶片表面親水性氫氧基處理 70 4.4.2.2. 製備APTES自組裝層 71 4.4.2.3. 固定ATRP起始劑 72 4.4.2.4. 表面起始ATRP聚合PMAA高分子刷 73 4.4.3. 晶片表面抗體改質 73 4.4.4. 聚苯乙烯微球合成 75 4.4.4.1. 苯乙烯單體抑制劑去除 75 4.4.4.2. 苯乙烯單體無乳化劑聚合法 75 4.4.5. 聚苯乙烯微球表面抗體接枝 76 4.5. 抗原抓取、標記 76 4.5.1. 鼠疫抗原F1 antigen of Yersinia pestis 76 4.5.1.1. 抗原濃度定量 77 4.5.1.2. 晶片抓取抗原標定 77 4.5.2. 聚苯乙烯微球抓取、標記 78 5. 結果與討論 79 5.1. 圖案化表面分析 79 5.1.1. 微影製程線型光阻圖案 79 5.2. 圖案化光學性質 82 5.2.1. 可見光繞射 82 5.3. 矽晶片表面高分子刷分析 84 5.3.1. 高分子刷表面AFM圖 84 5.3.2. FT-IR光譜分析 89 5.3.3. XPS光譜圖分析 90 5.3.3.1. 矽晶片改質後之XPS Wide Scan分析 90 5.3.3.2. APTES自組裝層(Si-APTES)之XPS分析 91 5.3.3.3. 固定起始劑BIBB(Si-BIBB)之XPS分析 92 5.3.3.4. 矽晶片表面起始聚合高分子刷(Si-PMAA)之XPS分析 93 5.3.4. 接觸角親疏水測定 94 5.3.4.1. 矽晶片表面改質不同階段之接觸角 94 5.4. Protein G@聚苯乙烯微球分析 96 5.4.1. FTIR光譜分析 96 5.4.2. SEM表面型態分析 97 5.4.3. DLS粒徑分析 98 5.4.3.1. 聚苯乙烯微球、Protein G DLS粒徑分析 98 5.4.3.1. 聚苯乙烯微球@Protein G DLS粒徑分析 99 5.5. Zeta-potential表面電位分析 100 5.5.1.1. 聚苯乙烯微球、Protein G Zeta表面電位分析 100 5.5.1.2. 聚苯乙烯微球@Protein G Zeta表面電位分析 102 5.6. 高分子雷射偵檢 103 5.7. 高分子晶片表面改質抗體之SEM圖 110 5.8. 高分子刷專一性抓取之表現 112 5.8.1. 抗原反應量分析 112 5.8.2. 鼠疫抗原貼附於高分子晶片之SEM圖 115 5.8.3. 鼠疫抗原貼附於高分子晶片之AFM圖 116 5.8.4. 高分子刷專一性抓取之螢光表現 118 5.8.5. 高分子刷專一性抓取雷射偵檢之表現 120 5.9. 高分子晶片表面抗原建立三明治結構之表現 121 5.9.1. 建立三明治結構後之螢光表現 122 5.9.2. 建立三明治結構後雷射偵檢之表現 123 結論 126 參考文獻 127 保密同意書 132

[1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, no. 8, pp. 939-945, 2004.
[2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, no. 5, pp. 1069-1075, 1980.
[3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, no. 5, pp. 677-710, 2000.
[4] S. Milner, "Polymer brushes," Science, vol. 251, no. 4996, pp. 905-914, 1991.
[5] M. Ejaz, Y. Tsujii, and T. Fukuda, "Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization," Polymer, vol. 42, no. 16, pp. 6811-6815, 2001.
[6] M. Biesalski and J. Rühe, "Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface," Macromolecules, vol. 32, no. 7, pp. 2309-2316, 1999.
[7] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, no. 5, pp. 1433-1441, 1996.
[8] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, no. 6, p. 6536, 1995.
[9] D. L. P. a. W. A. Z. W. C. Bigelow, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, no. 6, pp. 513-538, 1946.
[10] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, no. 13, pp. 4481-4483, 1983.
[11] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, no. 19, pp. 7152-7167, 1991.
[12] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, no. 10, pp. 4218-4221, 2002.
[13] D. Gopireddy and S. M. J. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," vol. 35, no. 10, pp. 4218-4221, 2002.
[14] E. a. a. Delamarche, B. Michel, H. Kang, and C. Gerber, "Thermal stability of self-assembled monolayers," Langmuir, vol. 10, no. 11, pp. 4103-4108, 1994.
[15] J. A. Howarter and J. P. Youngblood, "Optimization of silica silanization by 3-aminopropyltriethoxysilane," Langmuir, vol. 22, no. 26, pp. 11142-11147, 2006.
[16] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212-4217, 1999.
[17] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, no. 15, p. 151906, 2013.
[18] G. Masci, L. Giacomelli, and V. Crescenzi, "Atom transfer radical polymerization of N‐isopropylacrylamide," Macromolecular rapid communications, vol. 25, no. 4, pp. 559-564, 2004.
[19] K. Matyjaszewski and J. Xia, "Atom transfer radical polymerization," Chemical reviews, vol. 101, no. 9, pp. 2921-2990, 2001.
[20] T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full‐Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, no. 4, pp. 1180-1184, 2013.
[21] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, no. 1, pp. 5-9, 2005.
[22] Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, no. 24, pp. 29827-29835, 2013.
[23] E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic acid mediated suppression of PNIPAAm microgels thermoresponsive behavior," Macromolecules, vol. 44, no. 3, pp. 612-621, 2011.
[24] H. Xiao, 半導體製程技術論, 二版 ed. 臺北市: 臺灣培生教育出版, 2007.
[25] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, no. 8, pp. 7227-7233, 2012.
[26] M. G. Santonicola, G. W. de Groot, M. Memesa, A. Meszynska, and G. J. Vancso, "Reversible pH-controlled switching of poly (methacrylic acid) grafts for functional biointerfaces," Langmuir, vol. 26, no. 22, pp. 17513-17519, 2010.
[27] S. Sanjuan and Y. J. M. Tran, "Stimuli-responsive interfaces using random polyampholyte brushes," vol. 41, no. 22, pp. 8721-8728, 2008.
[28] T. E. Patten and K. J. A. M. Matyjaszewski, "Atom transfer radical polymerization and the synthesis of polymeric materials," vol. 10, no. 12, pp. 901-915, 1998.
[29] S. Tugulu et al., "Synthesis of poly (methacrylic acid) brushes via surface-initiated atom transfer radical polymerization of sodium methacrylate and their use as substrates for the mineralization of calcium carbonate," vol. 40, no. 2, pp. 168-177, 2007.
[30] F. Xu, X. Yang, C. Li, and W. Yang, "Functionalized polylactide film surfaces via surface-initiated ATRP," Macromolecules, vol. 44, no. 7, pp. 2371-2377, 2011.
[31] F. Xu, Z. Wang, and W. Yang, "Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules," Biomaterials, vol. 31, no. 12, pp. 3139-3147, 2010.
[32] F. Costantini, E. M. Benetti, D. N. Reinhoudt, J. Huskens, G. J. Vancso, and W. Verboom, "Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity," Lab on a Chip, vol. 10, no. 24, pp. 3407-3412, 2010.
[33] R. M. Fitch, M. B. Prenosil, and K. J. Sprick, "The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate," in Journal of Polymer Science Part C: Polymer Symposia, 1969, vol. 27, no. 1: Wiley Online Library, pp. 95-118.
[34] W. D. Harkins, "A general theory of the mechanism of emulsion polymerization1," Journal of the American Chemical Society, vol. 69, no. 6, pp. 1428-1444, 1947.
[35] J. W. Goodwin and R. H. Ottewill, "Properties of concentrated colloidal dispersions," Journal of the Chemical Society, Faraday Transactions, vol. 87, no. 3, pp. 357-369, 1991.
[36] R. Cox, M. Wilkinson, J. Creasey, A. Goodall, and J. Hearn, "Study of the anomalous particles formed during the surfactant‐free emulsion polymerization of styrene," Journal of Polymer Science: Polymer Chemistry Edition, vol. 15, no. 10, pp. 2311-2319, 1977.
[37] H. Qi, W. Hao, H. Xu, J. Zhang, and T. Wang, "Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure," Colloid and Polymer Science, vol. 287, no. 2, pp. 243-248, 2009.
[38] P. Vettiger et al., "Ultrahigh density, high-data-rate NEMS-based AFM data storage system," Microelectronic Engineering, vol. 46, no. 1-4, pp. 11-17, 1999.
[39] J. Pieper, T. Hafmans, J. Veerkamp, and T. J. B. Van Kuppevelt, "Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects," vol. 21, no. 6, pp. 581-593, 2000.
[40] X.-F. Hua et al., "Characterization of the coupling of quantum dots and immunoglobulin antibodies," vol. 386, no. 6, pp. 1665-1671, 2006.
[41] Y. Jia, C. Duran, Y. Hotta, K. Sato, and K. Watari, "The effect of polyelectrolyte on fabrication of macroporous ZrO 2 ceramics," Journal of materials science, vol. 40, no. 11, pp. 2903-2909, 2005.
[42] K. Sofińska, Z. Adamczyk, and J. Barbasz, "Mechanism of immunoglobulin G adsorption on polystyrene microspheres," Colloids and Surfaces B: Biointerfaces, vol. 137, pp. 183-190, 2016.
[43] I.-H. Song and J. E. Dennis, "A novel method for large-scale immuno-SEM using protein G coupled polystyrene beads," Journal of electron microscopy, vol. 59, no. 6, pp. 527-530, 2010.
[44] L. Lei, H. Li, J. Shi, and Y. Chen, "Diffraction patterns of a water-submerged superhydrophobic grating under pressure," Langmuir, vol. 26, no. 5, pp. 3666-3669, 2010.

無法下載圖示 全文公開日期 2025/09/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE