簡易檢索 / 詳目顯示

研究生: 呂少航
Shao Hang Lu
論文名稱: 適用於窄頻電力線通訊之循環穩態式脈衝干擾消除演算法設計
Design of Cyclostationary Impulsive Noise Mitigation Algorithm for Narrowband Power Line Communications
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 郭鴻飛
Hung-Fei Kuo
錢膺仁
Ying-Ren Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 循環穩態脈衝干擾FRESH濾波器電力線通訊正交分頻多工
外文關鍵詞: Cyclostationary impulsive noise, frequency shift (FRESH) filtering, narrowband power line communications (NB-PLC), orthogonal frequency-division multiplexing (OFDM)
相關次數: 點閱:786下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

許多運作在窄頻電力線通道內含的設備,其內部具切換式功能的電子零件容易產生高能量的脈衝干擾訊號,常導致資料在傳輸過程中受到破壞,以致於資料失去完整性。而根據研究統計顯示,具循環穩態(cyclostationary)特性的週期性脈衝干擾為窄頻通道內最具威脅性的雜訊干擾之一,且其能量通常較背景雜訊大上數十倍以上。
為了克服脈衝干擾對資料傳輸品質的影響,以及降低傳輸錯誤率,本論文提出一循環穩態式脈衝干擾消除演算法,採用頻移濾波器(frequency shift filter, FRESH filter)來估測脈衝干擾,以改善傳統線性非時變(linear time invariant, LTI)濾波器對於循環穩態式脈衝干擾估測的效能。此外,並結合可適性雜訊預測器(adaptive noise predictor)提升重建雜訊的完整度,來降低訊號受脈衝干擾影響的程度。由模擬結果顯示,本論文所提出之演算法可有效估測及消除接收訊號中之循環穩態式脈衝干擾,相較於傳統零化法(blanking)的消除方式,其性能有顯著的提升。


There are many power devices operated in the narrowband power line channel. Therein, the electronic components with switching function will introduce high energy impulsive noise. Therefore, the data are corrupted during transmission and data integrity issue is missed. Research statistics indicate that the periodic impulsive noise with cyclostationary characteristics is one of the most threatening noises in the narrowband channel, and its energy is usually more than 10 times larger than the background noise.
In order to overcome the impact of impulsive noise on data transmission quality and to reduce the probability of transmission error, in this thesis, we propose a cyclostationary impulsive noise mitigation algorithm utilizing frequency shift (FRESH) filter to estimate impulsive noise. It can improve the performance of cyclostationary impulsive noise estimation by the conventional linear time-invariant (LTI) filter. Moreover, an adaptive noise predictor is combined to enhance the integrity of reconstructed noise, and to reduce the impact due to signal being interfered by the impulsive noise. Simulation results show that the algorithm proposed in this thesis can effectively estimate and mitigate the cyclostationary impulsive noises in the received signals and it can achieve significantly improved performance in comparison with the conventional blanking method.

摘要.........................................I Abstract....................................II 誌謝.......................................III 目錄........................................IV 圖目錄......................................VI 表目錄....................................VIII 第1章 緒論...............................1 1.1 研究背景...........................1 1.2 文獻探討...........................2 1.3 研究動機與目的.....................4 1.4 論文架構...........................5 第2章 電力線通訊系統.....................6 2.1 電力線通訊簡介.....................6 2.2 電力線通訊系統架構.................7 2.2.1 系統架構簡介.................7 2.2.2 里德所羅門碼.................8 2.2.3 迴旋碼.......................9 2.2.4 維特比解碼器................10 2.2.5 差分相位調變技術............10 2.3 正交分頻多工技術.................13 2.3.1 正交分頻多工系統............13 2.3.2 OFDM正交性與保護區間........14 2.4 電力線通道與雜訊模型.............16 2.4.1 窄頻電力線通道模型..........16 2.4.2 窄頻電力線雜訊模型..........18 第3章 可適性FRESH濾波器................22 3.1 FRESH濾波器.....................22 3.2 TA-LMS based FRESH濾波器........25 第4章 循環穩態脈衝雜訊消除.............29 4.1 循環穩態脈衝雜訊干擾問題.........29 4.2 循環穩態脈衝雜訊消除架構.........31 4.3 FRESH雜訊預測演算法.............32 4.4 突發式脈衝干擾偵測器.............34 第5章 模擬分析與實驗結果...............35 5.1 實驗模擬參數設定.................35 5.2 實驗結果分析.....................36 第6章 結論與未來展望...................46 6.1 結論.............................46 6.2 未來展望.........................46 參考文獻....................................47

[1] H. Gharavi and R. Ghafurian, “Smart grid: the electric energy system of the future,” Proceedings of the IEEE, vol. 99, no. 6, pp. 917-921, Jun. 2011.
[2] S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid:
the role of power line communications in the smart grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 998-1027, Jun. 2011.
[3] B. Adebisi, A. Treytl, A. Haidine, A. Portnoy, R. u. Shan, D. Lund, H.
Pille, and B. Honary, “IP-Centric high rate narrowband PLC for smart grid applications,” IEEE Communications Magazine, vol. 49, no. 12, pp. 46-54,
Dec. 2011.
[4] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “A survey on smart grid potential applications and communication requirements,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28-42, Feb. 2013.
[5] K. M. Rabie and E. Alsusae, “On improving communication robustness in PLC systems for more reliable smart grid applications,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2746-2756, Nov. 2015.
[6] M. Erol-Kantarci and H. T. Mouftah, “Energy-Efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 179-197, 2015.
[7] M. Nassar, J. Lin, Y. Mortazavi, A. Dabak, I. Kim, and B. Evans, “Local utility power line communications in the 3–500 kHz band: channel impairments, noise, and standards,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 116-127, Sept. 2012.
[8] J. Lin, T. Pande, I. H. Kim, A. Batra, and B. L. Evans, “Time-Frequency modulation diversity to combat periodic impulsive noise in narrowband powerline communications,” IEEE Transactions on Communications, vol. 63, no. 5, pp. 1837-1849, May 2015.
[9] J. A. Cortés, A. Sanz, P. Estopiñán, and J. I. García, “On the suitability of the Middleton class A noise model for Narrowband PLC,” in Proc. IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Bottrop, Germany, 20-23, March 2016, pp. 58-63.
[10] M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1267-1276, Jul. 2006.
[11] M. Nassar, A. Dabak, I. H. Kim, T. Pande, and B. L. Evans, “Cyclostationary noise modeling in narrowband powerline communication for smart grid applications,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25-30, March 2012, pp. 3089-3092.
[12] M. Elgenedy, M. Sayed, A. E. Shafie, I. Kim, and N. Al-Dhahir, “Cyclostationary noise modeling based on Frequency-Shift Filtering in NB-PLC,” in Proc. IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4-8, Dec. 2016, pp. 1-6.
[13] M. Elgenedy, M. Sayed, and N. Al-Dhahir, “A Frequency-Shift-Filtering approach to cyclostationary noise modeling in MIMO NB-PLC,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7-9, Dec. 2016, pp. 881-885.
[14] G. Ndo, P. Siohan, and M.-H. Hamon, “Adaptive noise mtigation in impulsive environment: application to power-line communications,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 647-656, Apr. 2010.
[15] Y.-R. Chien, Y.-W. Chen, and H.-W. Tsao, “Signal-Quality-Aware impulsive noise mitigation for OFDM-based power line communications,” in Proc. Iternational Conference on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, 6-8, Jan. 2015, pp. 174-175.
[16] Y. C. Kim, J. N. Bae, and J. Y. Kim, “Novel noise reduction scheme for power line communication systems with smart grid applications,” in Proc. IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9-12, Jan. 2011, pp. 791-792.
[17] H. Yasui, A. Nakamura, and M. Itami, “Impulsive noise mitigation scheme that combines nulling and time sample replacement,” in Proc. IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7-11, Jan. 2016, pp. 337-338.
[18] K. Anoh, B. Adebisi, K. M. Rabie, M. Hammoudeh, and H. Gacanin, “On companding and optimization of OFDM signals for mitigating impulsive noise in power-line communication systems,” IEEE Access, vol. 5, pp. 21818-21830, Nov. 2017.
[19] M. Korki, N. Hosseinzadeh, and T. Moazzeni, “Performance evaluation of a narrowband power line communication for smart grid with noise reduction technique,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1598-1606, Nov. 2011.
[20] G. Caire, T. Y. Al-Naffouri, and A. K. Narayanan, “Impulse noise cancellation in OFDM: an application of compressed sensing,” in Proc. IEEE International Symposium on Information Theory (ISIT), Toronto, ON, Canada, 6-11, Jul. 2008, pp. 1293-1297.
[21] L. Lampe, “Bursty impulse noise detection by compressed sensing,” in Proc. IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Udine, Italy, 3-6, Apr. 2011, pp. 29-34.
[22] S. Liu, F. Yang, W. Ding, J. Song, and Z. Han, “Impulsive noise cancellation for MIMO-OFDM PLC systems: a structured compressed sensing perspective,” in Proc. IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4-8, Dec. 2016, pp. 1-6.
[23] H. Zhang, L.-L. Yang, and L. Hanzo, “Compressed impairment sensing-assisted and interleaved-double-FFT-aided modulation improves broadband power line communications subjected to asynchronous impulsive noise,” IEEE Access, vol. 4, pp. 81-96, Feb. 2016.
[24] J. Lin, M. Nassar, and B. L. Evans, “Impulsive noise mitigation in powerline communications using sparse Bayesian learning,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 7, pp. 1172-1183, Jul. 2013.
[25] N. Shlezinger and R. Dabora, “Frequency-Shift Filtering for OFDM signal recovery in narrowband power line communications,” IEEE Transactions on Communications, vol. 62, no. 4, pp. 1283-1295, Apr. 2014.
[26] E. Alsusa and K. M. Rabie, “Dynamic peak-based threshold estimation method for mitigating impulsive noise in power-line communication systems,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2201-2208, Oct. 2013.
[27] F. H. Juwono, Q. Guo, D. D. Huang, Y. Chen, L. Xu, and K. P. Wong, “On the performance of blanking nonlinearity in real-valued OFDM-based PLC,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 449-457, Jan. 2018.
[28] “IEEE standard for low-frequency (less than 500 kHz) narrowband power line communications for smart grid applications,” IEEE Standard 1901.2-2013, Dec. 2013.
[29] S. Haykin, Digital Communication Systems, Hoboken, NJ, USA: Wiley, 2013.
[30] J. G. Proakis and M. Salehi, Digital Communications, New York, NY, USA: McGraw-Hill, 2007.
[31] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Transactions on Communications, vol. 50, no. 4, pp. 553-559, Apr. 2002.
[32] J. Antoni, “Cyclic spectral analysis in practice,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 597-630, Feb. 2007.
[33] K. F. Nieman, J. Lin, M. Nassar, K. Waheed, and B. L. Evans, “Cyclic spectral analysis of power line noise in the 3-200kHz band,” in Proc. IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Johannesburg, South Africa, 24-27, March 2013, pp. 315-320.
[34] O. A. Y. Ojeda and J. s. Grajal, Adaptive FRESH filtering, Rijeka, Croatia: InTech, 2011.
[35] W. A. Gardner, “Cyclic Wiener filtering: theory and method,” IEEE Transactions on Communications, vol. 41, no. 4, pp. 151-163, Jan. 1993.
[36] J. Tian, H. Guo, H. Hu, and H. H. Chen, “Frequency-shift filtering for OFDM systems and its performance analysis,” IEEE Systems Journal, vol. 5, no. 3, pp. 314-320, Sept. 2011.
[37] S. Haykin, Adaptive Filter Theory, 5th ed., Edinburg Gate, England: Pearson, 2014.
[38] N. J. Bershad, E. Eweda, and J. C. M. Bermudez, “Stochastic Analysis of the LMS and NLMS algorithms for cyclostationary white Gaussian inputs,” IEEE Transactions on Signal Processing, vol. 62, no. 9, pp. 2238-2249, May 2014.
[39] N. Shlezinger, K. Todros, and R. Dabora, “Adaptive filtering based on time-averaged MSE for cyclostationary signals,” IEEE Transactions on Communications, vol. 65, no. 4, pp. 1746-1761, Apr. 2017.
[40] A. H. Sayed, Adaptive Filters, Piscataway, NJ, USA: IEEE Press, 2008.

無法下載圖示 全文公開日期 2023/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE