簡易檢索 / 詳目顯示

研究生: 林哲賢
Jhe-Sian Lin
論文名稱: OFDM系統在多路徑衰減下探討神經網路接收器遭遇脈衝干擾之性能
BER Study of OFDM System in Multipath Fading using Neural Network Receiver Subject to Impulse Noise Interference
指導教授: 曾德峰
Der-Feng Tseng
口試委員: 張立中
Li-Chung Chang
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 43
中文關鍵詞: 正交分頻多工多路徑衰減脈衝雜訊通道全連接神經網路微調訓練方法
外文關鍵詞: OFDM, Multipath fading, Impulse noise channel, Fully Connected Neural Networks, Fine-tune training method
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要目標為探討神經網路接收器[1]以及經由正交分頻多工(Orthogonal frequency-division multiplexing, OFDM)後的訊號,在多路徑衰減(Multipath Fading)與脈衝雜訊(Impulse Noise)干擾的雙重影響下,是否能透過神經網路的學習,讓接收器有更好的錯誤更正能力。
對於有線通訊或無線通訊,脈衝雜訊的出現無可避免,瞬間的強力干擾不僅會破壞傳送的訊號,更會使系統在資料的解讀上產生大量的錯誤。本文將介紹的雜訊通道模型有三種:第一種是常見的可加性高斯白雜訊(Additive White Gaussian Noise, AWGN)通道模型,第二種是白努利-高斯(Bernoulli-Gaussian)脈衝雜訊通道模型[2],最後則是本文模擬所採用的固定脈衝雜訊通道模型。
本文將使用全連接神經網路的架構,來模擬訊號在多路徑衰減下,受雜訊干擾的性能。以AWGN所訓練出來的模型作為比較,再介紹微調(Fine-tune)[3]的訓練方法,來訓練脈衝雜訊模型,提升受脈衝干擾的性能。


In this paper, we study the performance of OFDM systems in multipath fading and subject to impulse noise interference, using deep learning whether to improve the error-correcting ability of the neural network receiver[1].
Impulse noise can not avoid in the wired or wireless communication systems. As the impulse noise is different from the general AWGN noise, the energy of impulse noise is often hundreds of times that of the AWGN. Always make the systems have a lot of errors. In this paper, we will introduce three types of the noise channel model: the first type is common AWGN channel model, the second type is Bernoulli-Gaussian(BG) impulse noise channel model[2], and the last type is the fixed impulse noise channel model which we used.
In this paper, we will use the Fully Connected Neural Networks(FCNNs) structure, to simulate the performance of signals in multipath fading and impulse noise interference. And using the fine-tune[3] training method, used to train the impulse noise model to compare with AWGN model.

第 1 章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 章節概述 2 第 2 章 通訊系統架構 3 2.1 通訊系統架構圖 3 2.1.1 流程簡述 4 2.2 正交分頻多工(OFDM)技術 4 2.2.1 原理 4 2.2.2 循環前綴(Cyclic Prefix,CP) 5 2.3 通訊系統相關設置 6 第 3 章 雜訊通道模型與多路徑衰減 7 3.1 雜訊簡介 7 3.2 可加性高斯白雜訊(AWGN)通道模型建立 7 3.3 脈衝雜訊通道模型 8 3.3.1 白努利-高斯(BG)脈衝雜訊通道模型建立 8 3.3.2 固定脈衝雜訊通道模型建立 9 3.4 多路徑衰減 11 第 4 章 神經網路接收器 13 4.1 全連接神經網路架構 13 4.2 神經網路設置 13 4.3 損失函數與優化器 15 4.4 權重初始化 15 第 5 章 模擬結果 17 5.1 AWGN模型 17 5.2 微調(Fine-tune)訓練方式 21 5.3 脈衝雜訊模型 21 5.3.1 脈衝雜訊模型(i) 22 5.3.2 脈衝雜訊特性用於訓練模型的臆測 25 5.3.3 脈衝雜訊模型(ii) 26 第 6 章 結論與未來研究方向 31 6.1 結論 31 6.2 未來研究方向 31

[1] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang, “Power of Deep learning for Channel Estimation and Signal Detection in OFDM Systems,” IEEE Commun. Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.
[2] 陳韋銘, “極化碼基於無記憶性脈衝通道之效能分析,” 國立臺灣科技大學電機工程研究所碩士論文, 民國一百零七年七月.
[3] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, Pramod Viswanath, “Communication Algorithms via Deep Learning,” University of Washington, May 2018.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.
[5] K. Cho et al. (2014). “Learning Phrase Representations Using RNN Encoder- Decoder for Statistical Machine Translation.” [Online]. Available: http://arxiv.org/abs
/1406.1078
[6] C. Weng, D. Yu, S. Watanabe, and B.-H. F. Juang, “Recurrent deep neural networks for robust speech recognition,” in Proc. ICASSP, Florence, Italy, May 2014, pp. 5532–5536.

無法下載圖示 全文公開日期 2025/12/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2025/12/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE