簡易檢索 / 詳目顯示

研究生: 江錦政
Ching-cheng Chiang
論文名稱: 應用於OFDM之預先編碼研究
Study Research on Precoder for OFDM Systems
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 張立中
Li-Chung Chang
陳仁智
Ren-Jr Chen
蔡長嵐
Chang-Lan Tsai
蕭昌龍
Chang-Lung Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 預先編碼頻率多樣性正交Shannon 極限渦輪碼最大事後機率列表式球型解碼離散傅立葉轉換
外文關鍵詞: precoding, frequency diversity, orthogonality, Shannon limit, turbo code, MAP, List sphere decoding(LSD), Discrete Fourier Transform (DFT)
相關次數: 點閱:230下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中將研究以正交分頻多工以基礎,利用預先編碼技術去增加頻率多
    樣性,我們將利用各種不同符合正交特性的預先編碼矩陣,配合使用通道編碼和
    沒有使用通道編碼的差異性,而通道編碼是採用接近Shannon 極限且很受歡迎的
    渦輪碼。由於渦輪碼裡的解碼器利用重覆性觀念,是近來年研究的主要方向之
    一,雖然重覆性的過程是次佳解,但事實上,它的結果我們是可以接受的,重覆
    性架構還提供另一個好處是複雜低,容易實現在硬體上。
    通道環境是使用雷利衰減通道,並且接收端是己知通道的情況下,接收端是
    以渦輪碼的概念來建構次佳解的重覆式接收器,而接收器的偵測與解碼是利用軟
    資訊來互相交換資訊,以達到最大事後機率的目標。但最大事後機率必需要計算
    每個位元,其複雜度也頗高,為了要降低接收器的複雜度,我們另外使用球型解
    碼來當作偵測器,我們稱為列表式球型解碼,而列表式球型解碼與最佳偵測之
    間,是一個Tradeoff 問題。
    在各種預先編碼之中,我們證明以離散傅立葉轉換的預先編碼矩陣最能匹配
    我們的系統,其多樣性增益將隨著維度越高而越大,而如果再配合多維度信號集
    合的設計,更可改善在低維度的多樣性增益。


    In this thesis, precoding techniques are used to increase frequency diversity in orthogonal frequency division multiplexing (OFDM) systems. Several orthogonal precoding matrices have been employed, and simulation results are shown for uncoded and coded systems (including block, convolutional and turbo codes). In recent years turbo codes have been an important research topic since they can achieve a performance very close to the Shannon limit, and exploit the concept of iteration. Although the iteration process is a suboptimal solution, it provides an acceptable
    performance. Another advantage of the iteration process is its low complexity, which allows hardware implementation.
    The channel model used in this research is a Rayleigh Fading channel. It has
    been assumed that the channel parameters are known to the receiver. The iterative receiver is based on the concept of turbo codes. The receiver’s estimator and decoder exploit and exchange soft information in order to achieve the maximum-a-posteriori (MAP) probability. However, since obtaining the MAP probability implies including every bit in the computations, complexity is increased considerably. In order to reduce the receiver’s complexity, sphere decoding is used for estimation. In this thesis, this
    estimator is named list sphere decoder (LSD). Using LSD or optimal estimation becomes a tradeoff issue.
    Amongst the several precoding techniques, the discrete Fourier transform (DFT) precoding matrix is the most effective in OFDM systems. The DFT precoding matrix provides a diversity gain which increases with the number of (signal?) dimensions. If a set of multidimensional signals is included in the system design, the DFT precoding matrix can also improve performance when low dimensions are used.

    圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 多樣性之介紹 1.3 PRECODE技術 1.4 ITERATION DETECTION AND DECODING說明 第二章 OFDM介紹 2.1 OFDM的基本架構 2.2 IEEE STD 802.16-2004的OFDM系統架構 第三章 預先編碼技術 3.1 HADAMARD CODE 3.2 DFT CODE 3.3 RCM 3.4 MULTI-DIMENSIONAL SIGNAL SETS 3.5 DCT CODE 第四章 系統架構與原理 4.1 ITERATION DETECTION AND DECODING 4.2 MAP STRUCTURE 4.3 SPHERE DECODING 4.4 TURBO CODE 第五章 模擬結果 5.1 UNCODED SYSTEMS 5.2 CODED SYSTEMS 第六章 總結 第七章 參考文獻 第八章 附錄 8.1 MAP ALGORITHM

    [1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes”, Proc. ICC’93, Geneva, Switzerland, May 1993, pp. 1064-1070
    [2] C. Douillard et al., “Iterative Correction of Intersymbol Interference: Turbo-Equalization”, ETT Vol. 6 No. 5, pp. 507-511, Sep/Oct. 1995
    [3] M. L. Moher, “Turbo-based multiuser detection’, Proc. IEEE int. Symp. On Inf. Theory, Ulm, June 1997
    [4] S. Le Goff, A. Glavieux, C. Berrou, “Turbo-Codes and High Spectral Efficiency Modulation”, Proc. ICC ’94, pp. 645-649
    [5] T. Mittelholzer, X. Lin, J. Massey, “Multilevel Turbo Coding for M-ary Quadrature and Amplitude Modulation”, Int. Symp. On Turbo Codes, Brest, September 1997
    [6] P. Robertson, “An Overview of Bandwidth Efficient Turbo Coding Schemes”, Int. Symp. On Turbo Codes, Brest, September 1997
    [7] J. G. Proakis, “Digital Communications”, McGraw-Hill, 1995
    [8] V. M. Da5ilva and E. S . Sousa, "Performance of Orthogonal CDMA Codes for Quasi-Synchronous Communication Systems," Proc. of /IEEE KUPC '93, Ottawa, Canada, Oct. 1993, pp. 995-99.
    [9] L. Vandendorpe, "Multitone Direct Sequence CDMA System in an Indoor Wireless Environment," Proc. of IEEE First Symposium of Communications and Vehicular Technology in the Benelux, Delft, The Netherlands, Oct. 1993, pp. 4.1-1-4.1.8.
    [10] Hara, S. and Prasad, R, “Overview of multicarrier CDMA’, Communications Magazine, IEEE, Vol. 35, Issue 12, Dec. 1997 ,pp. 126-133
    [11] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House Publishers, Boston, 2000.
    [12] Helsinki, Finland, ” Performance of R-OFDM with Conventional Receivers”, 3GPP TSG RAN WG1 LTE Ad Hoc Meeting, 23 – 25 January, 2006
    [13] V. Sanchez, P. Garcia, A. Peinado, J. Segura, and A. Rubio, “Diagonalizing properties of the discrete cosine transform,” EEE Trans. Signal Process., vol. 43, no. 11, pp. 2631–2641, Nov. 1995.
    [14] Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 2003, pp. 676–679.
    [15] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley, 2003.
    [16] Hochwald, B.M.; ten Brink, S. “Achieving near-capacity on a multiple-antenna channel”, Comm., IEEE Trans. on Vol. 51, Issue 3, March 2003 pp.389 – 399.
    [17] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary and block convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429–445, Mar. 1996.
    [18] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary and block convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp.429–445, Mar. 1996.
    [19] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and suboptimal MAP decoding algorithms operating in the log domain,” in Proc. Int. Conf. Communications, June 1995, pp. 1009–1013.
    [20] J. Hagenauer, P. Robertson, and L. Papke, “Iterative (‘turbo’) decoding of systematic convolutional codes with theMAPand SOVA algorithms,” in Proc. ITG Symp. Source and Channel Coding, 1994, pp. 21–29.
    [21] M. Pohst, ”On the computation of lattice vectors of minimal length, successive minima and reduced basis with applications,” ACM SIGSAM, vol. 15, pp. 37-44, 1981
    [22] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channel,” IEEE Trans. Inform. Theory, vol. 45, pp. 1639-1642, July 1999
    [23] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Trans. Inform. Theory, vol. 48, pp. 2201-2214, Aug. 2002.
    [24] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes,” Proceeding of ICC ’93,Geneva, Switzerland, pp. 1064-1070, May 1993.
    [25] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications”, TDA Progress Report, pp.24-39, Feb. 1995.
    [26] 洪鉦翰, “A Research Study on Synchronization for WiMAX”, NTUST, July 2007.

    無法下載圖示 全文公開日期 2012/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE