簡易檢索 / 詳目顯示

研究生: 劉峵瑋
Hung-wei Liu
論文名稱: 擬脆性固材於熱驅破壞之準靜、動態力學行為
Static and Dynamic Mechanical Behavior of Quasi-brittle Solid with Heat-driven Fracture
指導教授: 陳堯中
Yao-chung Chen
陳立憲
Li-hsien Chen
口試委員: 黃燦輝
Tsan-hwei Huang
壽克堅
Keh-jian Shou
吳建宏
Jian-hong Wu
莊福盛
Fu-sheng Chuang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 234
中文關鍵詞: 非破壞檢測霍普金斯桿聲光裂韌度試驗拉力強度試驗破熱破壞隧道火災
外文關鍵詞: Acoustic-optic NDT measurement., Split Hopkison bar, Tensile strength test, Fracture toughness test, Thermo-induced damage, Tunnel fire
相關次數: 點閱:325下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隧道施工期間之動態鑽炸開挖行為;與營運階段火害對噴凝襯砌與圍岩之破壞對永續工程之災防安全攸關。另於施工或營運階段,遇既存地熱或人為熱源(如輻射廢儲或瀝青灌漿)等地質狀況與其地下空間之遇火災變之防杜研析,均應對其地下結構物與岩盤等擬脆性固材之熱力驅動引致破壞之機制加以瞭解,俾於全生命週期之各工程階段提供適確之學理參佐,加強地下結構物與岩盤之永續防護,進而提升進度效率、降低人員傷亡與維護施工及營運成本。
    本研究乃針對上述工程問題與兩個研究議題(地熱地質與隧道工程與火害),以擬脆性固材(人造類岩與天然岩材)於「熱力-固力」耦合驅動破壞,分別如下三項子題簡化模擬研探之:
    隧道火害之研究議題:
    1. 連續式單向度熱驅破壞後之準靜態力學機制;
    2. 軸對稱中空圓孔熱源之熱驅破壞演化特徵;
    動態鑽炸與地熱堪虞地質之研究議題:
    3. 離散式熱驅破壞後之動態力學行為。
    於子題1與2整合同步化非破壞聲射訊號擷取技術(面內)與電子斑紋干涉術(面外),同步化研析固材由內而外之破壞演化,且於子題1以微觀非破壞聲-光技術計算破裂韌度可”同步但獨立”於傳統巨觀破壞力學實驗結果作相互比對;子題3則以不同加載速率研析岩材於熱驅破壞後之拉力強度與破裂韌度之影響,且以雷射間距量測法觀察平均裂縫擴展速度。
    研究結果顯示,於單向度連續熱驅破壞後之準靜態力學行為方面,巨觀觀察得到連續性之力學參數(動態彈性模數與包生比、拉力強度與破裂韌度)預測方程式,以及水泥砂漿之臨界破壞溫度約為500~600℃間,低於此臨界值者,拉力強度與破裂韌度漸次折減約14~14.5%/100℃;反之,高於此臨界值者,拉力強度與破裂韌度則約以29~37%/100℃之降幅急遽折減乃至破壞。由微觀檢測之比對亦知,常溫下試體於固力加載比(Load Level, LL)約為80%之前,微裂縫多聚集於半圓盤試體上方加載端附近,LL超過80%後,微裂縫才大量增生聚集於下方預裂縫前沿,由拉力裂縫尖端應力狀態主控其破壞裂衍,當持續加載歷程達峰後狀態,微裂縫則相互串聯演化成可視之巨觀裂縫。惟固材於高溫狀態(約大於450℃),「熱力-固力」耦合驅動破壞特徵顯現,即加載比約在80%時,微裂縫分布只少量聚於半圓盤試體上方加載端,卻已大量增聚於預裂縫前沿尖端。此外,以非破壞聲光技術以逆運算方式求驗固材破裂韌度,可得合理一致之成果;於離散式熱驅破壞後之動態力學行為上,加載率則與動態拉力強度與破裂韌度成正相關。而其受測花崗岩固材可能之臨界破壞溫度落位於450~600℃之區間,亦即溫度於25~450℃之力學參數影響不大,但450至600℃之間,其力學參數產生了較大之變化,研判可能與花崗岩材中之礦物相變有關,此外,溫度越高,則平均裂縫擴展速度就越快。
    中空圓孔熱驅破壞行為方面,本研究以熱傳理論推導線性熱驅之彈-塑性力學理論解與數值解析;再與中空圓孔熱驅破壞試驗耦合聲光非破壞同步化檢測相互比對,其數值分析之溫度與應力分布與彈性理論應力分布相似;於實驗部分,熱電偶量測固材之熱傳溫度,以及由聲學訊號空間位置觀察微裂縫「叢聚」現象與光學研析「初裂」發生,比對彈性理論解得知破壞時溫度分布和破壞之空間位置與實驗結果相近;發生叢聚時,裂縫大量聚集於正規化半徑()約為4.5~6.5之間,再由同步化光學影像得知初裂出現於約為5.0處;此外,透過理論解研析不同升溫速率與孔徑比得知,升溫速率越快或孔徑比越大時,破壞時間(tf)與量綱化半徑(f)越小,但破壞溫度會越高;由中空圓孔線性熱驅條件因子(M)得知,M越大,tf與f越小,M<5時,則破壞時機與半徑變化較大。


    The early development of Taiwan transportation infrastructure was mostly located on the side of mountain region forming a circumferential turnpike and railway network. The rapid densification of this network continues. At present, National highway design considers environmental and economical impacts. To reduce damage to sensitive ecosystems brought on by construction, bridges and tunnels are considered to be the environmentally sustainable options. Previously, a lot of emphasis has been given to safety and economy of excavation of rock mass without particular attention to excavation in heated rock and to effects of tunnel fires.
    However, thermo-induced damage affects the structural and material integrity of civil engineering structures; the damage can induce direct or indirect extensive structural collapse. This study aims to give engineers and tunnel designers a reference for protecting the tunnel structure and surrounding rock, increasing construction efficiency as well as decreasing casualties and cost in the project life cycle.
    In this study, the complicated engineering problem was simplified into two issues; geo-thermal rock and tunnel fire studied under three topics: 1. Pseudo-static mechanics test after one-dimensional heat-driven Fracture(HdF), 2. Dynamic mechanics test after individual heat-driven damage, and 3. Heat-driven damage test with linear transient thermal loading (LTTL) on inner hollow surface (HIS) for investigating the failure mechanism.
    The intended purpose of the method was to predict the effects of heat treatment on the static and dynamic mechanical properties and characteristic width of process zones, as well as the establishment of theoretical model is to predict fracture occurring time and position on the topic of HdD with LTTL on HIS. The numerical and experimental methods were used to verify the theoretical model. In addition, using the theoretical model discusses the fracture influence of increasing temperature rate and the radius ratio of outer and inner hole.
    The results of the 1st topic showed that in the macroscopic, all of the results can be regressed by a continuous equation; therefore, the regression equations obtained from the results of continued heat-damaged specimen pieces represented more accurate prediction equations. Moreover, a critical damage temperature is approximately 500-600°C. For a temperature range between room temperature and approximately 500-600°C; the variation of all of the mechanical properties decreased by approximately 7.6-14.5% per 100°C, but they decreased by approximately 29-37% per 100°C between 500-600°C and the highest temperature used in the tests. On investigating the microscopic results, for specimen at room temperature, micro-cracks cluster around the top of SCB sample (near the loading position) before approximate loading level of 80%, then micro-cracks will cluster around the tip of pre-existing crack during loading level of 80% and 100%. The micro-cracks around the tip of pre-existing crack dominate the SCB fracture behavior. However, for the higher temperature specimen (approximately 450°C), before loading level of 80%, micro-cracks do not cluster at the top of Semi-circular Bend (SCB) sample, because the thermal-induced defects existed within the SCB sample, the stress field near top of SCB sample is a compressive situation, the micro-cracks will be closing, hence the acoustic emission sensors will receive new signals from the top of SCB sample during this stage. Moreover, the study attempted to calculate fracture toughness of quasi-brittle material using synchronized nondestructive techniques. Currently, only some sample results were obtained.
    The results on 2nd topic showed that the dynamic mechanical parameters increase with the loading rate and decrease with the heat treatment in general. The parameters are hardly affected between room temperature and 450°C. the parameters decrease sharply between 450 and 600°C, it is probably related with the phase change of Quartz from the  to  phase, in which volume increases by 0.4% at approximately 573°C. In addition, the average velocity of crack propagation increases with the temperature.
    On investigation of the results of the 3rd topic, comparison of the temperature and stresses between simulation analysis and theoretical results obtained the similar patterns; for experimental results, the temperature of heat conduction, the micro-crack localization position by AE, as well as the macro-crack initiation location from ESPI are the similar as the theoretical results. The localization position clusters between approximately nondimensional radius () of 4.5 and 6.5 using acoustical technique and the initiation location emerges at approximately  of 5. Then, using the theoretical model to understand the fracture behavior with varying increasing temperature rate (M) and the radius ratio of outer- and inner-hole (b); the f decreases and failure temperature increases with the M and b increases. To investigate the coefficient M, the f decreases with M increases, when the M<5, the failure time and the f increase.

    目 錄 中文摘要 I 英文摘要 IV 目 錄 XI 符號對照表 XVI 圖目錄 XXII 表目錄 XXX 第一章 緒論 1 1.1 動機與目的 1 1.2 範圍與方法 13 1.2.1 試驗材料之備製 13 1.2.2 試驗方法之說明 13 1.2.3 試驗量測之儀設 14 1.3 架構與流程 14 第二章 文獻回顧 18 2.1 「熱力-固力」驅動破壞理論 18 2.1.1 熱學概述 18 2.1.2 熱擴散方程式 20 2.1.3 單向度連續熱傳導理論 22 2.1.4 軸對稱熱傳理論 25 2.1.5 熱彈應力理論 28 2.2 固材之破壞理論 32 2.2.1 固材熱學破壞 32 2.2.2 熱驅作用後固材之力學特性 34 2.2.3 線彈性破壞力學 41 2.2.4 裂端微塑區 44 2.3 準靜態破壞性試驗 50 2.3.1 破裂韌度之半圓盤試驗 50 2.3.2 間接拉力之巴西圓盤試驗 56 2.4 動態破壞試驗之霍普金斯桿 60 2.5 非破壞檢測 67 2.5.1 聲學式之聲射訊號擷取技術 67 2.5.2 光學式之電子斑紋干涉術 75 第三章 中空圓孔熱驅破壞模型之理論解析 80 3.1 模型建立與基本架設 80 3.2 量綱分析 81 3.3 彈性理論解析 83 3.3.1 線性熱載之熱傳解析 83 3.3.2 線性熱載下之彈性理論 87 3.4 塑性理論解析 89 第四章 試驗規劃與執行 92 4.1 熱驅破壞試驗 92 4.1.1 單向度連續熱驅破壞後之巴西圓盤試驗 92 4.1.2 單向度連續熱驅破壞後之半圓盤破裂韌度試驗 97 4.1.3 受熱後岩材之動態力學試驗 99 4.1.4 中空圓孔熱驅破壞試驗 104 4.2 非破壞檢測技術 108 4.2.1 聲射訊號擷取系統 108 4.2.2 電子斑紋干涉術 110 4.2.3 雷射間隙量測法 114 第五章 單向度連續熱驅破壞後之擬靜態破壞試驗 118 5.1 試驗參數與說明 118 5.2 動態彈性波傳參數 121 5.3 單向度連續熱驅破壞後之破裂韌度 127 5.3.1 破裂韌度 127 5.3.2 連續熱損溫度與材料微觀破壞演化 130 5.3.3 非破壞聲學量測之裂端微塑區寬度與破裂韌度計算之初探 133 5.3.4 非破壞光學檢測計算之破裂韌度 137 5.4 單向度連續熱驅破壞後之間接拉力強度 142 5.5 拉力強度與破裂韌度之關係 144 第六章 離散式熱驅後岩材之動態破壞試驗 146 6.1 破裂韌度 146 6.2 裂紋擴展速度 151 6.3 拉力強度 152 第七章 中空圓孔熱驅模型之升溫與邊界效應 155 7.1 彈性理論解與數值模擬比對 155 7.2 彈性理論解與破壞實驗比對 161 7.3 升溫速率之影響 173 7.4 孔徑比之影響 176 7.5 綜合討論 179 第八章 結論與建議 182 8.1 結論 182 8.1.1 單向度連續熱驅破壞後之擬靜態破壞試驗 182 8.1.2 離散式熱驅破壞後岩材之動態破壞試驗 183 8.1.3 中空圓孔熱驅模型之升溫與邊界效應 184 8.2 建議 185 8.2.1 單向度熱驅破壞後之擬靜態破壞試驗 185 8.2.2 離散式熱驅破壞後岩材之動態破壞試驗 186 8.2.3 中空圓孔熱驅模型之升溫與邊界效應 186 8.2.4 非破壞檢測部分 188 參考文獻 191

    Aliha, M.R.M., Ayatollahi, M.R., 2013. Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics 103, 115-123.
    Amjas, M.A., 1999. Elasticity and shrinkage of cement: sand mortar produced in Riyadh. Engineering Science, 11, 91-105.
    Atkinson, B.K., 1987. Fracture Mechanics of Rock. Academin Press, New York.
    Ayatollahi, M.R., Aliha, M.R.M., 2007. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science, 38, 660-670.
    Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M., 2006. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens. Materials Science and Engineering: A 417, 348-356.
    ASTM E610-82, 1999. Standard Definitions of Terms Relating to Acoustic Emission, ASTM American society for testing and materials.
    ASTM E976-84, A., 2000. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, American society for testing and materials.
    Bieniawski, Z.T., 1967a. Mechanism of brittle fracture of rock: Part I—theory of the fracture process. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4, 395-406.
    Bieniawski, Z.T., 1967b. Mechanism of brittle fracture of rock: Part II—experimental studies. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4, 407-423.
    Chang, Y.C., 2013. Fracture Toughness & Tensile Strength under Continuous Heat-induced Damage of Granular Material with Acoustic-optic Examination, Master, Department of Cival and Construction Engineering. National Taiwan University of Sciene and Technology, Taiwan.
    Chen, L.H., 2001. Failure of Rock under Normal Wedge Indentation, Ph. D., Department of Civil and Mining Engineering. University of Minnesota, USA.
    Chen, W.F., Han, D.J., 1988. Plasticity for Structural Engineers, Springer-Verlag New York Inc..
    Dai, F., Chen, R., Xia, K., 2010a. A semi-circular bend technique for determining dynamic fracture toughness. Experimental Mechanics, 50, 783-791.
    Dai, F., Huang, S., Xia, K., Tan, Z., 2010b. Some fundamental issues in dynamic compression and tension tests of tocks using split hopkinson pressure bar. Rock Mechanics and Rock Engineering, 43, 657-666.
    Deng, H.F., Li, J.L., Zhu, M., Wang, R.H., Yan, X.F., Luo, Q., 2012. Research on effect of disc thickness-to-diameter ratio on splitting tensile strength of rock. Chinese Journal of Rock Mechanics and Engineering, 792-798.
    Erdogan, F., Sih, G.C., 1963. On the crack extension path in plates under plane loading and transverse shear. ASME Journal of Basic Engineering, 85, 519-527.
    Fakhimi, A., Tarokh, A., 2013. Process zone and size effect in fracture testing of rock. International Journal of Rock Mechanics and Mining Sciences, 60, 95-102.
    Grosse, C., Ohtsu, M., 2008. Acoustic Emission Testing, in: Grosse, C., Ohtsu, M. (Eds.). Springer Berlin Heidelberg.
    Haidar, K., Pijaudier-Cabot, G., Dube, J.F., Loukili, A., 2005. Correlation between the internal length, the fracture process zone and size effect in model materials. Materials and Structures/Materiaux et Constructions, 38, 201-210.
    Heuze, F.E., 1983. High-temperature mechanical, physical and Thermal properties of granitic rocks— A review. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20, 3-10.
    Hu, X., Duan, K., 2007. Size effect: Influence of proximity of fracture process zone to specimen boundary. Engineering Fracture Mechanics, 74, 1093-1100.
    Huang, K.C., 2009. Applications of Acoustic Emission and Distinct Elemnet Approach on Fracture Mechanism for Quasi-brittle Rock, Ph.D., Department of Civil and Construction Engineering. National Taiwan University of Secience and Tachnology, Taiwan.
    ISRM, 1978. Suggested methods for determining tensile strength of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 99-103.
    Inserra, C., Biwa, S., Chen, Y., 2013. Influence of thermal damage on linear and nonlinear acoustic properties of granite. International Journal of Rock Mechanics and Mining Sciences, 62, 96-104.
    Jianhong, Y., Wu, F.Q., Sun, J.Z., 2009. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. International Journal of Rock Mechanics and Mining Sciences, 46, 568-576.
    Jose, B.T., A., S., Abraham, B.M., 1989. Log-log method for determination of preconsolidation pressure. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27, 230–237.
    Kai, G.Z., Kobayashi, A.S., Hawkins, N.M., 1993. Further studies on fracture process zone for mode I concrete fracture. Engineering Fracture Mechanics, 46, 1041-1049.
    Kawasaki, Y., Wakuda, T., Kobarai, T., Ohtsu, M., 2013. Corrosion mechanisms in reinforced concrete by acoustic emission. Construction and Building Materials, 48, 1240-1247.
    Keshavarz, M., Pellet, F.L., Loret, B., 2010. Damage and changes in mechanical properties of a Gabbro thermally loaded up to 1,000°C. Pure and Applied Geophysics, 167, 1511-1523.
    Kolsky, H., 1953. Stress Waves in Solids. Clarendon Press, Oxford.
    Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P., Funatsu, T., 2014. ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mechanics and Rock Engineering, 47, 267-274.
    Lonnermark, A., Ingason, H., 2005. Gas temperatures in heavy goods vehicle fires in tunnels. Fire Safety Journal, 40, 506-527.
    Labuz, J.F., Shah, S.P., Dowding, C.H., 1987. The fracture process zone in granite: evidence and effect. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24, 235-246.
    Li, P., Rao, Q.H., Li, Z., Jing, J., 2014. Thermal-hydro-mechanical coupling stress intensity factor of brittle rock. Transactions of Nonferrous Metals Society of China, 24, 499-508.
    Mellor, M., Hawkes, I., 1971. Measurement of tensile strength by diametral compression of discs and annuli. Engineering Geology, 5, 173-225.
    Narayan Swamy, R., 1971. Dynamic Poisson's ratio of portland cement paste, mortar and concrete. Cement and Concrete Research, 1, 559-583.
    Nasseri, M.H.B., Mohanty, B., Young, R.P., 2006. Fracture toughness measurements and acoustic emission activity in Brittle rocks. Pure and Applied Geophysics, 163, 917-945.
    Nasseri, M.H.B., Schubnel, A., Young, R.P., 2007. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. International Journal of Rock Mechanics and Mining Sciences, 44, 601-616.
    Ohno, K., Ohtsu, M., 2010. Crack classification in concrete based on acoustic emission. Construction and Building Materials, 24, 2339-2346.
    Ohno, K., Uji, K., Ueno, A., Ohtsu, M., 2014. Fracture process zone in notched concrete beam under three-point bending by acoustic emission. Construction and Building Materials, 67, Part B, 139-145.
    Ohtsu, M., 1995. Acoustic emission theory for moment tensor analysis. Research in Nondestructive Evaluation, 6, 169-184.
    Ohtsu, M., Kaminaga, Y., Munwam, M.C., 1999. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method. Construction and Building Materials, 13, 57-64.
    Ohtsu, M., Ono, K., 1988. AE source location and orientation determination of tensile cracks from surface observation. NDT International, 21, 143-150.
    Otsuka, K., Date, H., 2000. Fracture process zone in concrete tension specimen. Engineering Fracture Mechanics, 65, 111-131.
    Ozișik, M.N., 1993. Heat conduction. New York : Wiley, U.S.A.
    Polyaev, V.M., Genbach, A.N., Genbach, A.A., 1992. An experimental study of thermal stress in porous materials by methods of holography and photoelasticity. Experimental Thermal and Fluid Science, 5, 697-702.
    Radu, V., Taylor, N., Paffumi, E., 2008. Development of new analytical solutions for elastic thermal stress components in a hollow cylinder under sinusoidal transient thermal loading. International Journal of Pressure Vessels and Piping, 85, 885-893.
    Sanford, R.J., 2003. Principles of Fracture Mechanics. Prentice Hall : 216.
    Scherbakov, I.P., Chmel, A.E., 2014. Impact fracture of granite at temperatures from 20 to 500oC. Russian Geology and Geophysics, 55, 1223-1228.
    Schmidt, R.A., 1980. Microcrack model and its significance to hydraulic fracturing and fracture toughness testing. U.S. Symposium on Rock Mechanics, 581-590.
    Shah, S.G., Kishen, J.M.C., 2010. Fracture behavior of concrete–concrete interface using acoustic emission technique. Engineering Fracture Mechanics, 77, 908-924.
    Shah, S.P., 1990. Experimental methods for determining fracture process zone and fracture parameters. Engineering Fracture Mechanics, 35, 3-14.
    Shigeishi, M., Ohtsu, M., 2001. Acoustic emission moment tensor analysis: development for crack identification in concrete materials. Construction and Building Materials, 15, 311-319.
    Smith, D.J., Ayatollahi, M.R., Pavier, M.J., 2001. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue & Fracture of Engineering Materials & Structures, 24, 137-150.
    Timoshenko, S., 1951. Theory of Elasticity 2nd. New York McGraw-Hill.
    Wai, R.S.C., Lo, K.Y., Rowe, R.K., 1982. Thermal stress analysis in rocks with nonlinear properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19, 211-220.
    Wanne, T.S., Young, R.P., 2008. Bonded-particle modeling of thermally fractured granite. International Journal of Rock Mechanics and Mining Sciences, 45, 789-799.
    Watanabe, K., Bangi, M.R., Horiguchi, T., 2013. The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures. Cement and Concrete Research, 51, 6-13.
    Wei, S.X., 2003. Thermal Conductive Property of Ordinary Performance Concrete, Master, Department of Civil Engineering Chung Yuan Christian University, Taiwan.
    Wu, C.Y., 2009. Automatic Synchronization of Acoustic and Optic Nondestructive Techniques to Investigate the Group-cutter Effect during Indentation Fracture of Rock-like Material, Master, Institute of Civil and Disaster Prevention Engineering. National Taipei University of Technology, Taiwan.
    Xia, M., Zhao, C., Hobbs, B.E., 2014. Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength. Computers and Geotechnics, 55, 461-473.
    Yin, T., Li, X., Xia, K., Huang, S., 2012. Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mechanics and Rock Engineering, 45, 1087-1094.
    Yu, J., Yu, K., Lu, Z., 2012. Residual fracture properties of concrete subjected to elevated temperatures. Materials and Structures, 45, 1155-1165.
    Zhang, D., Wu, K., 1999. Fracture process zone of notched three-point-bending concrete beams. Cement and Concrete Research, 29, 1887-1892.
    Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L., Dai, F., 2012. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. International Journal of Rock Mechanics and Mining Sciences, 49, 105-112.
    Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L., Dai, F., 2015. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials, in: Ulusay, R. (Ed.), The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Springer International Publishing, 35-44.
    Zietlow, W.K., Labuz, J.F., 1998. Measurement of the intrinsic process zone in rock using acoustic emission. International Journal of Rock Mechanics and Mining Sciences, 35, 291-299.
    危時秀,2003,普通混凝土熱傳導性質之研究,碩士論文,土木工程研究所,中原大學, 台灣。
    周胤德、忻元發、張世忠,2004,從近年國內外之重大公路長隧道事故探討隧道營運管理安全設施策略,臺灣公路工程,第三十卷,第七期,第2-13頁。
    陳聖文,2008,岩石熱力學與力學性質之研究-以三種岩石為例,碩士論文,資源工程學系,國立成功大學,碩士論文台灣。

    QR CODE