簡易檢索 / 詳目顯示

研究生: 王力平
Li-Ping Wang
論文名稱: 多頻道振動訊號之頻散特徵及時頻響應於鋼筋混凝土受熱驅破壞之構材深度與握裹傷損判識
Using Multi-Channel Vibration Signals by Dispersion Characteristics and Time-Frequency Responses to Detect Thermal-induced Degradation Depth and Debonding on Reinforced Concrete
指導教授: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
林俊宏
Chun-Hung Lin
口試委員: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
林俊宏
Chun-Hung Lin
張大鵬
Ta-Peng Zhang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 163
中文關鍵詞: 鋼筋混凝土隧道火害構材傷損判識非破壞檢測超音波脈衝導波多頻道表面波技術
外文關鍵詞: Reinforced Concrete, Tunnel Fire, Structural Degradation Identification, Non-Destructive Testing, Ultrasonic Pulse, Guided Wave, Multi-channel Analysis of Surface Wave
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 火災發生後對構材傷損之質與量調查,與後續居安使用功能之評核至關重要。為研析隧道構材 (襯砌之鋼筋混凝土) 受熱驅作用 (火災、地熱等效應) 後,其混凝土與鋼筋互制之握裹行為,本研究針對隧道表層之二次襯砌,以混凝土設計強度420 kgf/cm2、#6鋼筋、保護層2公分考慮構材受熱表層至裏層之鋼筋混凝土複合材料,並以不同溫度歷程作用(最高溫度700 ℃、深3公分處實測溫度400、520 ℃)作為試驗之變數控制。針對混凝土材料,以超音波脈衝(UP)之簡速型非破壞量測正規化指標:剪-壓波速比(Vs/Vp)及其受熱之溫度歷程,推估實際受熱損之最高溫度;針對鋼筋混凝土材料,導入材料介面缺陷之概念,其一由氣泡墊包覆鋼筋模擬握裹完全喪失,另一以明火於試體單側之熱驅作用深入鋼筋與混凝土介面,形成實際握裹傷損,並以導波量測(GW)之多頻道表面波震測法(MASW),探討振動訊號於不同鋼筋混凝土介面下之波傳行為及特徵。藉由接收之數據分析,所得之波譜圖、影像可判識鋼筋混凝土構材之傷損深度,抑或是不同握裹行為之變化。
    試驗結果顯示,超音波脈衝量測於混凝土火害最高溫度判識上,其剪-壓波速比隨溫度增加而有明顯提升,並能以單一剪-壓波速比有效反推其最高溫度;於導波量測成果:(1)於鋼筋端敲擊,混凝土表面接收之導波振幅能量折減比率於模擬握裹傷損區域增加,相比無受損情況提升28%,而明火握裹傷損段則顯著提升,升幅50%。於混凝土表面敲擊,(2)速度-頻率域之頻散影像於無損情況下,圖上所對應相位波速範圍透過反算可得剪力波速約為2450 m/s;於受700℃明火熱驅傷損下,其剪力波速顯著下降至1400 m/s,折減達43%;透過程式反算之剪力波速剖面影像可判識明火傷損深度為4公分。由上可知,波速判識混凝土傷損深度適確可行。(3)時間-頻率域於有鋼筋區域之特徵顯示為左右對稱似水滴型圖案,但於握裹傷損情形下,能量將於水滴型左側100 kHz處消散,將能量正規化並圈選能量為0.2之位置,量測圖中左側於100±5 kHz處之局域曲率,可知局域曲率會因握裹傷損程度而有降低之現象;試驗結果顯示,臨界局域曲率m_crit為6,可知握裹傷損越嚴重,局域曲率越小,此法判識握裹傷損可行。
    以導波量測之多頻道表面波震測上之判識,針對常見構材鋼筋混凝土握裹介面傷損評估之探討方法,提出多頻道振動訊號特徵於混凝土與鋼筋間介面傷損判識之方法論,後續研究可再逐步朝向實際物、化傷損(如震損、鋼筋鏽蝕)引致握裹行為變化之探究,俾利作為實驗室及現場之傷損評估工具/方法、未來損害預測模型建置與火災現場判識應用。


    The quantitative and qualitative investigations of fire-induced degradation after a fire occurs are crucial to verify residential security. In order to study the bond behaviors between concrete and reinforcing steel after the tunnel structure (RC with lining) are thermally driven, the reinforced concrete composites from a surface layer of a member to a bond layer will be considered for secondary lining in a surface layer of a tunnel with a design strength of concrete in 420 kgf/cm2, #6 reinforcing steel, and a protective layer in 2 cm as well as in different temperatures (a maximum temperature of 700℃, as well as 400℃ and 520℃ actually measured in a depth of 3 cm) as variable control. For concrete, the use of nondestructive normalized index by ultrasonic pulse (UP): Vs/Vp and temperature history, is used to actually estimate the maximum temperature damaged by heat; for reinforced concrete, two concepts of material interface defect are introduced, where one for cladding reinforcing steel by bubble wraps simulates bond loss as well as the other for thermally driving to an interface between reinforcing steel and concrete on the single side of a test piece by open fire forms the actual debonding to investigate the behavior of surface wave and vibration signal in different interfaces of reinforced concrete by the Multi-channel Analysis of Surface Wave (MASW) Method of guided wave (GW). With the analysis on received data, the obtained wave spectra and images can be used to identify the degradation depth of reinforced concrete member or the different bond behavior.
    The testing results showed that Vs/Vp obviously increased with temperature when ultrasonic pulses was used to measure a maximum temperature on concrete damaged by a fire, as well as the maximum temperature can be effectively estimated by single Vs/Vp; the results from the guided wave showed: (1) Amplitude energy reduction ratio received on concrete surface in the region of simulated debonding increased 28% while the open fire test increased 50% compared to no damage when tapped on the end of reinforcing steel. Tapped on concrete surface: (2) the phase velocity-frequency domain of dispersion curve can be calculated as shear wave velocity (V_s). Without damage, V_s=2450 m/s; V_s obviously dropped to 1400 m/s with a reduction ratio of 43% under 700℃ by open fire; the V_s profile image obtained through the inverse calculation can be estimated that the fire degradation depth is 4 cm. It is feasible for V_s to determine the degradation depth of concrete. (3) The time-frequency domain characteristics in the region of reinforcing concrete showed a water drop pattern in lateral symmetry. In debonding zone, energy would disappear in 100 kHz on the left side of water drop pattern. By normalizing energy and circling it at 0.2, the measurement of the partial curvature in 100±5 kHz on the left side of a diagram can realize the partial curvature would drop owing to debond; the testing results showed that the critical partial curvature was 6, more serious debond and the smaller partial curvature. This method can identify debonding.
    For the identification of MASW on debond of reinforced concrete, a characteristic of multi-channel vibration signal is proposed to identify the debonding between concrete and reinforcing steel. Investigations on bond behavior in real object and chemical injury (such as vibration damage, corrosion of reinforcing steel) will be made in the following study as an injury evaluation tool/method for laboratory and site as well as damage forecast modeling and fire scene identification in the future.

    摘要 I ABSTRACT III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 符號對照表 XXI 中英對照表 XXIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究範圍與方法 5 1.4 研究架構與流程 6 第二章 文獻回顧 9 2.1 鋼筋混凝土構材受熱驅之傷損機制 9 2.1.1 混凝土之傷損 9 2.1.2 鋼筋混凝土握裹傷損機制 14 2.1.3 高溫與握裹傷損之關係 15 2.2 水泥基質材受熱驅作用之力學變化 16 2.3 基本波傳原理 21 2.3.1 體波 21 2.3.2 表面波 23 2.3.3 應力波於介質內傳遞 24 2.4 超音波脈衝量測技術 27 2.5 導波量測技術 29 2.5.1 導波於鋼筋內傳遞 29 2.5.2 導波應用於鋼筋混凝土握裹狀況評估 31 2.6 表面波震測法 33 2.6.1 表面波譜分析 (SASW) 34 2.6.2 多頻道表面波分析 (MASW) 36 2.6.3 多頻道波譜分析 (MSASW) 36 2.6.4 多頻道波場轉換分析 (MWTSW) 37 2.6.5 表面波震測造影技術 38 第三章 研究規劃與執行 41 3.1 試驗材料 41 3.2 破壞試驗儀設 45 3.2.1 明火試驗 45 3.2.2 明火試驗試體切割規劃 49 3.3 非破壞試驗儀設 51 3.3.1 超音波脈衝量測 51 3.3.2 導波量測 52 3.4 超音波脈衝量測分析 54 3.5 導波量測試驗 55 3.5.1 試驗變數、定值與編碼凡例 55 3.5.2 施測配置與試驗流程 58 3.5.3 多頻道波場轉換分析流程 61 3.6 外業導波量測試驗規劃 65 第四章 試驗成果與分析 69 4.1 超音波量測成果 69 4.2 導波量測成果 75 4.2.1 空間 - 時間域之振幅/時間與構材傷損之關係 82 4.2.2 速度 - 頻率域圖判識火害傷損深度 89 4.2.3 時間 - 頻率域圖判識握裹傷損 95 4.3 導波於實際火災現地案場之應用 101 4.3.1 案例:隧道火害調查 101 4.3.2 案例:新北市民宅火害調查 111 第五章 結論與建議 117 5.1 結論 117 5.2 建議 118 參考文獻 121 附錄A、委員意見回應表 A-1 附錄B、導波量測試驗紀錄表 B-1 附錄C、保護層厚度設計參考規範 C-1 附錄D、鋼筋出廠證明書 D-1 附錄E、WD FO79接收器規格 E-1

    1. 中華民國國家標準,2014,建築物構造構件耐火試驗法-第1 部:一般要求事項,CNS 12514-1,經濟部標準檢驗局。
    2. 中華民國國家標準,2014,混凝土圓柱試體抗壓強度檢測法,CNS 1232,經濟部標準檢驗局。
    3. 中華民國國家標準,試驗室混凝土試體製作及養護法,CNS 1230,經濟部標準檢驗局,2005。
    4. 中國民國國家標準,2014,「建築物構造構件耐火試驗法」,經濟部標準檢驗局。
    5. 內政部建研所,2008,「建築物構造防火性能檢證技術手冊」,金友勝數位科有限公司。
    6. 沈進發、陳舜田、張郁慧,1993,火害延時對混凝土材料性質之影響,國立台灣科技大學碩士論文。
    7. 內政部研建署,2012,「最新建築技術規則」,詹氏書局。
    8. 陳舜田,1999,建築物火害及災後安全評估法,科技圖書,台北,第85-166頁。
    9. 陳逸龍,2004,多頻道表面波試驗程序表準化之研究,國立交通大學碩士論文。
    10. 林俊宏,2005,Pseudo-section 概念於表面波震測應用之數值模擬探討,國立交通大學碩士論文。
    11. 黃兆龍,2007,混凝土性質與行為。台北市:詹氏書局。
    12. 林喻峰,2010,以敲擊回音法檢測鋼纖維混凝土之保護層厚度。建國科技大學碩士論文。
    13. 胡成泓,2012,以頻域及時頻分析輔助孔內震測走時分析自動化,國立交通大學碩士論文。
    14. 許慧如,2015,以表面R波頻散法檢測混凝土結構內部鋼筋周圍裂縫之可行性研究,國立中興大學碩士論文。
    15. 柯志揚,2016,結合聲-光非破壞檢測於隧道環境遭熱驅破壞之傷損判識,國立台灣科技大學碩士論文。
    16. 黃崑瑭,2017,以聲-光非破壞檢測判識隧道襯砌受熱-固傷損之力學行為,國立台灣科技大學碩士論文。
    17. 張弘毅,2017,以表面R波檢測混凝土表面裂縫深度之研究,國立中興大學碩士論文。
    18. 林欣蓉,2018,水泥基質材料受火害傷損之正規化超音波脈衝指標及其碳化特徵與燒失比對,國立台灣科技大學碩士論文。
    19. 楊佳嘉,2018,以導波技術檢測鋼筋混凝土握裹介面傷損之初探,國立台北科技大學碩士論文。
    20. 黃仁佑,2019,複合式超音波脈衝與多頻道導波法於鋼筋混凝土構材之火災鑑識及其延-脆介面之握裹傷損評估,國立台北科技大學碩士論文。
    21. ASTM C597-09, 2009, Standard Test Method for Pulse Velocity Through Concrete, Annual book of ASTM standards, American Society for Testing and Materials.
    22. ASTM E610-82, 1999, Standard Definitions of Terms Relating to Acoustic Emission, Annual book of ASTM standards, American Society for Testing and Material.
    23. ASTM E976-84, 2000, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, Annual book of ASTM standards, American Society for Testing and Materials.
    24. Anderberg & Thelandersson, 1976, Stress and Deformation Characteristics of Concrete at High Temperatures. 2. Experimental Investigation and Material Behaviour Model.
    25. Banerjee S. & Sriramadasu R. C., 2020, Sensitivity of longitudinal guided wave modes to pitting corrosion of rebars embedded in reinforced concrete, Indian Institute of Technology Bombay, Powai.
    26. Bartoli & Ivan, 2007, Structural health monitoring by ultrasonic guided waves, Ph. D., UC San Diego.
    27. Bažant ,Z., Kaplan, M., 1996, Concrete at high temperatures: Material Properties and Mechanical Models, Longman Group Limited.
    28. BeataZima & RafałKędra, 2019, Reference-free determination of debonding length in reinforced concrete beams using guided wave propagation, University of Technology.
    29. Bowen B. R., 1992, Damage detection in concrete elements with surface wav e. The University of Texas at Austin.
    30. Carino, Nicholas J., 2001, "The impact-echo method: an overview."Structures: A Structural Engineering Odyssey. 1-18.
    31.G. T. G. Mohamedbhai, 1986, Effect of exposure time and rates of heating and cooling on residual strength of heated concrete, Magazine of Concrete Research, pp. 151-158.
    32. Georgali and Tsakiridis, 2005, Microstructure of fire-damaged concrete. A case study, Hellenic Cement Research Center Ltd., K. Pateli 15, 14123 Lykovrissi, Athens, Greece.
    33. Jiashen Li. & Ye Lu., 2017, Guided waves for debonding identification in CFRP-reinforced concrete beams, Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia.
    34. Junhui Zhao & Nicholas Durham, 2019, Acoustic guided wave techniques for detecting corrosion damage of electrical grounding rods, University of Manitoba.
    35. Li, D., Ruan, T., & Yuan, J. 2012, Inspection of reinforced concrete interface delamination using ultrasonic guided wave non-destructive test technique, Science China Technological Sciences 55.10: 2893-2901.
    36. Lin, Chih-Ping, and Tzong-Sheng Chang, 2004, "Multi-station analysis of surface wave dispersion."Soil dynamics and earthquake engineering 24.11: 877-886.
    37. Lonnermark & Ingason, 2005, Heat release rates from heavy goods vehicletrailer fires in tunnels, SP Swedish National Testing and Research Institute, Bora ̊s, Sweden.
    38. M.S. Abrams, 1971, Compressive Strength of Concrete at Temperatures to 1600F, Special Publication.
    39. N. G. Zoldners, 1971, Temperature and Concrete, SP-25, American Concrete Institute, Detroit, Mich., pp.1-31.
    40. Omer Arioz, 2007, Effects of elevated temperatures on properties of concrete, Faculty of Engineering and Architecture, Department of Civil Engineering, Anadolu University, Iki Eylul Campus, 26555 Eskisehir, Turkey.
    41. Park, C. B., Miller, R.D., Xia, J., 1997, Multi-Channel Analysis of Surface Waves(MASW), A summary report of technical aspects, experimental results, and perspective.
    42. Promat, 2008, Tunnel Fire Protection for Tunnel Structures & Services.
    43. Rucka M. & Zima B., 2015, Elastic wave propagation for condition assessment of steel bar embedded in mortar. International Journal of Applied Mechanics and Engineering, 20(1), 159-170.
    44. Rucka M. & Zima B., 2017, Guided wave propagation for assessment of adhesive bonding between steel and concrete, Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland.
    45. Rucka M. & Zima B., 2017, "Non-destructive inspection of ground anchors using guided wave propagation."International Journal of Rock Mechanics and Mining Sciences 94: 90-102.
    46. Rucka M. & Zima B., 2019, Reference-free determination of debonding length in reinforced concrete beams using guided wave propagation, Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdan´sk University of Technology, ul. Narutowicza 11/12, 80-233 Gdan´sk, Poland.
    47. Sharma, S., & Mukherjee, A., 2010, Longitudinal guided waves for monitoring chloride corrosion in reinforcing bars in concrete. Structural Health Monitoring, 9(6), 555-567.
    48. Sharma, S., & Mukherjee, A., 2013, Nondestructive Evaluation of Corrosion in Varying Environments Using Guided Waves, Research in Nondestructive Evaluation, April 2013.
    49. Chih-Ping Lin, Cheng-Chou Chang, Tzong-Sheng Chang, 2004, The use of MASW method in the assessment of soil liquefaction potential, Soil Dynamics and Earthquake Engineering 24: 689-698.
    50. Willcocks M., Veidt M. & Palmer G., 2011, Spectral analysis of surface waves for damage detection in layered concrete structures, The University of Queensland, St Lucia, Australia.
    51. Young Hak Lee & Taekeun Oh, 2016, The Measurement of P-, S-, and R-Wave Velocities to Evaluate the Condition of Reinforced and Prestressed Concrete Slabs, Department of Architecture Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
    52. Zdeněk P. Bažant, M. F. Kaplan, 1996, Concrete at High Temperatures: Material Properties and Mathematical Models, Addison-Wesley.
    53. Zheng, Z., Lei, Y., & Xue, X., 2014, Numerical simulation of monitoring corrosion in reinforced concrete based on ultrasonic guided waves. The Scientific World Journal.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE