簡易檢索 / 詳目顯示

研究生: 巴尼締
Frizka Vietanti
論文名稱: 應用於AEMFC 的氮參雜還原氧化石墨烯之負載的三元鈀基陰極催化劑
Ternary Palladium based Cathode Catalyst Supported on Nitrogen doped Reduced Graphene Oxide for AEMFC
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
郭俞麟
Yu-Lin Kuo
施劭儒
Shao-Ju Shih
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 108
中文關鍵詞: 三元Pd-M(M = Fe,Ni,Co)N-rGO氧還原反應穩定性甲醇氧化
外文關鍵詞: ternary Pd-M (M = Fe, Ni, and Co), N-rGO, oxygen reduction reaction, stability, methanol oxidation
相關次數: 點閱:266下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧還原反應是燃料電池中產生電力的基本反應,對於該反應,三元Pd基碳基催化劑起重要作
    用。在此,我們報導了三步合成三元Pd-M(M = Fe,Co,Ni)摻入氮摻雜石墨烯(N-rGO)複
    合材料,其產生高氧還原反應活性,良好的穩定性和對甲醇氧化的耐受性在鹼性介質中。該方
    法包括微波水熱合成氮摻雜石墨烯,合成三元Pd-M的乳液,以及旋轉蒸發器技術製備複合材
    料。對於氧還原反應,發現PdFeCo / N-rGO> PdCoNi / N-rGO> PdFeNi / N-rGO的活性降低。 PdFeCo / N-rGO催化劑已經證明具有最高的電子轉移數,其接近主導的四電子途徑,並且還產
    生最少的羥基產率。這證實了PdFeCo / N-rGO的X射線衍射圖也顯示出最小的微晶尺寸和最高的
    ID / IG,其導致碳上的額外缺陷,因此導致氧還原反應活性增加。沒有明顯的團聚,並且通過 場發射掃描電子顯微鏡可以清楚地觀察到PdFeCo / N-rGO納米顆粒在層狀石墨烯片上的均勻分
    佈。此外,研究了X射線光電子能譜的元素組成和存在最高的石墨百分比。氮可以增加活性部
    位,從而提高氧還原反應活性。


    The oxygen reduction reaction (ORR) is a fundamental reaction in fuel cells to generate power, for which ternary Pd-based with carbon based catalyst plays an important role. Herein, we report the three-steps synthesis of ternary Pd-M (M= Fe, Co, Ni) incorporated nitrogen doped graphene (N-rGO) composite, which generated high ORR activity, good stability, and tolerance for methanol oxidation in alkaline media. This method involved a microwave hydrothermal to synthesize nitrogen doped graphene, an emulsion to synthesize ternary Pd-M, and a rota-evaporator technique to make a composite. For ORR, decreased activity were found PdFeCo/N-rGO > PdCoNi/N-rGO > PdFeNi/N-rGO. The PdFeCo/N-rGO catalyst has demonstrated the highest electron transfer number, which is close to dominant four electron pathway, and also generated least yield of % HO2-. This confirmed to X-ray diffraction (XRD) pattern of PdFeCo/N-rGO also showed the smallest crystallite size and the highest ID/IG which caused extra defects on carbon, thus led to increase ORR activity. There is no obvious agglomeration and the homogeneous distribution of PdFeCo/N-rGO nanoparticles over the layered graphene sheets were clearly observed from field emission scanning electron microscopy (FE-SEM) and representative field emission transmission electron microscope (FE-TEM) images. In addition, the X-ray photoelectron spectroscopy (XPS) was studied for elemental composition and presence highest precentage of graphitic-N which can increase active site leading to enhance the ORR activity.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENTS v TABLE OF CONTENT vii LIST OF FIGURE xi LIST OF TABLE xv CHAPTER I INTRODUCTION 1 1.1 Research Background 1 1.2 Scope Problems 1 1.3 Research Objectives 2 1.3 Research Advantages 2 CHAPTER II LITERATURE REVIEW 5 2.1 Fuel Cell 5 2.2 Electrochemical Reactions in Fuel Cell 6 2.3 Anion Exchange Membrane Fuel Cell 6 2.4 Palladium-based Catalayst for ORR 8 2.5 Palladium-based with Transition Metals for ORR 13 2.6 Graphene 15 2.6.1 Structure and Morphology of Graphene 16 2.6.2 Electrochemical Activity of Graphene 19 2.7 Nitrogen doped Graphene 22 2.7.1 Structure and Morphology of N-doped Graphene 22 2.7.2 Electrochemical Activity of N-doped Graphene 26 2.8 Influence of Methanol Oxidation 27 2.9 Emulsion Method 29 2.10 Hydrothermal Method 29 CHAPTER III EXPERIMENTAL DETAIL 33 3.1 Materials 33 3.2 Experimental Procedurs 34 3.2.1 Synthesize Nitrogen doped Reduced Graphene Oxide 34 3.2.2 Synthesize Ternary Pd-M Nanoparticles 34 3.2.3 Synthesize Ternary Pd-M Nanoparticles Supported N-rGO 35 3.3 Flowchart of Experimental 37 3.4 Experimental Matix 40 3.5 Materials Characterization 40 3.4.1 X-Ray Diffraction 40 3.4.2 Field Emission Scanning Electron Microscopy 41 3.4.3 Raman Spectroscopy 42 3.4.4 Field Emission Transmission Electron Microscopy 43 3.4.5 X-Ray Spectrometry 43 3.6 Electrochemical Measurement 44 3.6.1 Cyclic Voltammetry 45 3.6.2 Rotating Ring-Disk Electrode 45 3.6.2 Methanol Oxidation 45 3.6.3 Stability Test 45 CHAPTER IV RESULTS AND DISCUSSION 47 4.1 The Effect of Carbon Support 47 4.4.1 X-Ray Diffraction 47 4.4.2 Raman Spectra 48 4.4.3 Field Emission Scanning Elctron Microscopy with Energy Dispersive X-Ray Spectroscopy 50 4.4.4 Cyclic Voltammogram 52 4.4.5 Oxygen Reduction Reaction 53 4.2 The Effect of Transition Metals on Ternary Palladium-based Catalyst 56 4.2.1 X-Ray Diffraction 56 4.2.2 Raman Spectra 57 4.2.3 Field Emission Scanning Elctron Microscopy with Energy Dispersive X-Ray Spectroscopy 58 4.2.4 Cyclic Voltammogram 63 4.2.5 Oxygen Reduction Reaction 65 4.2.6 Field Emission Trasnmission Electron Microscopy 66 4.2.7 X-ray Photoelectron Microscopy 69 4.2.8 Methanol Oxidation 71 4.2.9 Stability Test 72 CHAPTER V CONCLUSIONS 75 REFERENCES xvii

    [1] Y. Yang, J. Wang, J. Zheng, S. Li, S. Zhang, A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell. Journal of Membrane Science, 467 (2014) 48-55.
    [2] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377 (2011) 1-35.
    [3] A. Zadick, L. Dubau, N. Sergent, G. Berthome, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catalysis, 5 (2015) 4819-4824.
    [4] H.R. Colón-Mercado, B.N. Popov, Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 155 (2006) 253-263.
    [5] A. Serov, C. Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application. Applied Catalysis B: Environmental, 90 (2009) 313-320.
    [6] H. Erikson, M. Liik, A. Sarapuu, J. Kozlova, V. Sammelselg, K. Tammeveski, Oxygen reduction on electrodeposited Pd coatings on glassy carbon. Electrochimica Acta, 88 (2013) 513-518.
    [7] L. Kuai, X. Yu, S. Wang, Y. Sang, B. Geng, Au–Pd alloy and core–shell nanostructures: One-pot coreduction preparation, formation mechanism, and electrochemical properties. Langmuir, 28 (2012) 7168-7173.
    [8] J.-J. Lv, S.-S. Li, A.-J. Wang, L.-P. Mei, J.-J. Feng, J.-R. Chen, Z. Chen, One-pot synthesis of monodisperse palladium–copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction. Journal of Power Sources, 269 (2014) 104-110.
    [9] J.H. Shim, Y.S. Kim, M. Kang, C. Lee, Y. Lee, Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features. Physical Chemistry Chemical Physics, 14 (2012) 3974-3979.
    [10] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11 (2016) 601-625.
    [11] B. Han, C. Xu, Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 39 (2014) 18247-18255.
    [12] G. Jiang, H. Zhu, X. Zhang, B. Shen, L. Wu, S. Zhang, G. Lu, Z. Wu, S. Sun, Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS nano, 9 (2015) 11014-11022.
    [13] J. Liu, C.Q. Sun, W. Zhu, Origin of efficient oxygen reduction reaction on Pd monolayer supported on Pd-M (M= Ni, Fe) intermetallic alloy. Electrochimica Acta, (2018).
    [14] M. Tarasevich, A. Sadkowski, E. Yeager, Oxygen electrochemistry, in: Comprehensive treatise of electrochemistry, Springer, 1983, pp. 301-398.
    [15] Z. Zhang, K.L. More, K. Sun, Z. Wu, W. Li, Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction. Chemistry of Materials, 23 (2011) 1570-1577.
    [16] L. Chen, H. Guo, T. Fujita, A. Hirata, W. Zhang, A. Inoue, M. Chen, Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro‐oxidation and Oxygen Reduction Reactions. Advanced Functional Materials, 21 (2011) 4364-4370.
    [17] J. Jia, H. Yu, X. Gao, J. Chi, Y. Zeng, B. Qin, D. Yao, W. Song, Z. Shao, B. Yi, 3D Pd/Co core–shell nanoneedle arrays as a high-performance cathode catalyst layer for AAEMFCs. RSC Advances, 8 (2018) 12887-12893.
    [18] W. Wang, D. Zheng, C. Du, Z. Zou, X. Zhang, B. Xia, H. Yang, D.L. Akins, Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 167 (2007) 243-249.
    [19] C. Xu, Y. Liu, H. Zhang, H. Geng, A Nanoporous PdCo Alloy as a Highly Active Electrocatalyst for the Oxygen‐Reduction Reaction and Formic Acid Electrooxidation. Chemistry–An Asian Journal, 8 (2013) 2721-2728.
    [20] J. Mora-Hernández, A. Ezeta-Mejía, C. Reza-San Germán, S. Citalán-Cigarroa, E.M. Arce-Estrada, Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. Journal of Applied Electrochemistry, 44 (2014) 1307-1315.
    [21] D.N. Son, O.K. Le, V. Chihaia, K. Takahashi, Effects of Co content in Pd-skin/PdCo alloys for oxygen reduction reaction: density functional theory predictions. The Journal of Physical Chemistry C, 119 (2015) 24364-24372.
    [22] S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40 (2011) 2644-2672.
    [23] R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C. Wang, Y. Lin, Y. Wang, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 11 (2009) 954-957.
    [24] Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, Y. Lin, Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 195 (2010) 4600-4605.
    [25] Y. Tan, C. Xu, G. Chen, N. Zheng, Q. Xie, A graphene–platinum nanoparticles–ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy & Environmental Science, 5 (2012) 6923-6927.
    [26] R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, Stabilization of electrocatalytic metal nanoparticles at metal− metal oxide− graphene triple junction points. Journal of the American Chemical Society, 133 (2011) 2541-2547.
    [27] L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 52 (2016) 2764-2767.
    [28] H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong, B. Zhang, High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Scientific reports, 3 (2013) 1765.
    [29] J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams. Advanced materials, 27 (2015) 2042-2048.
    [30] Z.-J. Lu, S.-J. Bao, Y.-T. Gou, C.-J. Cai, C.-C. Ji, M.-W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Rsc Advances, 3 (2013) 3990-3995.
    [31] Y.-H. Lee, K.-H. Chang, C.-C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources, 227 (2013) 300-308.
    [32] Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Three‐dimensional nitrogen and boron co‐doped graphene for high‐performance all‐solid‐state supercapacitors. Advanced Materials, 24 (2012) 5130-5135.
    [33] P.C. Jennings, S. Lysgaard, H.A. Hansen, T. Vegge, Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. Physical Chemistry Chemical Physics, 18 (2016) 24737-24745.
    [34] R. Carrera-Cerritos, V. Baglio, A. Aricò, J. Ledesma-García, M. Sgroi, D. Pullini, A. Pruna, D. Mataix, R. Fuentes-Ramírez, L. Arriaga, Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide. Applied Catalysis B: Environmental, 144 (2014) 554-560.
    [35] A. Ejaz, S. Jeon, The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. International Journal of Hydrogen Energy, 43 (2018) 5690-5702.
    [36] L. Sun, B. Liao, X. Ren, Y. Li, P. Zhang, L. Deng, Y. Gao, Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 235 (2017) 543-552.
    [37] B. Gou, W. Na, B. Diong, Fuel cells: dynamic modeling and control with power electronics applications, CRC press, 2016.
    [38] A. Dicks, D.A.J. Rand, Fuel cell systems explained, Wiley Online Library, 2018.
    [39] C. Kunusch, P. Puleston, M. Mayosky, Sliding-Mode control of PEM fuel cells, Springer Science & Business Media, 2012.
    [40] J. Zhang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, Springer Science & Business Media, 2008.
    [41] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. nature, 442 (2006) 282.
    [42] J.R. Varcoe, R.C. Slade, Prospects for alkaline anion‐exchange membranes in low temperature fuel cells. Fuel cells, 5 (2005) 187-200.
    [43] G. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 27 (2002) 507-526.
    [44] E. Gülzow, M. Schulze, Long-term operation of AFC electrodes with CO2 containing gases. Journal of Power Sources, 127 (2004) 243-251.
    [45] P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, J. Miners, The evolution of the performance of alkaline fuel cells with circulating electrolyte. Journal of Power Sources, 129 (2004) 193-204.
    [46] M. Schulze, E. Gülzow, Degradation of nickel anodes in alkaline fuel cells. Journal of Power Sources, 127 (2004) 252-263.
    [47] E. Agel, J. Bouet, J.-F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells. Journal of Power Sources, 101 (2001) 267-274.
    [48] T. Xua, Z. Liub, W. Yanga, Fundamental studies of a new series of anion exchange membranes: membrane prepared from poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) and triethylamine. Journal of membrane science, 249 (2005) 183-191.
    [49] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375 (2018) 158-169.
    [50] L. Carrette, K. Friedrich, U. Stimming, Fuel cells–fundamentals and applications. Fuel cells, 1 (2001) 5-39.
    [51] N. Brandon, D. Brett, Engineering porous materials for fuel cell applications. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 364 (2006) 147-159.
    [52] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.T. Goh, T.A. Hor, Y. Zong, Z. Liu, Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. Acs Catalysis, 5 (2015) 4643-4667.
    [53] S. Kabir, A. Serov, P. Atanassov, 3D-Graphene supports for palladium nanoparticles: effect of micro/macropores on oxygen electroreduction in anion exchange membrane fuel cells. Journal of Power Sources, 375 (2018) 255-264.
    [54] E. Antolini, Palladium in fuel cell catalysis. Energy & Environmental Science, 2 (2009) 915-931.
    [55] X. Li, Q. Huang, Z. Zou, B. Xia, H. Yang, Low temperature preparation of carbon-supported PdCo alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochimica Acta, 53 (2008) 6662-6667.
    [56] M. Tarasevich, G. Zhutaeva, V. Bogdanovskaya, M. Radina, M. Ehrenburg, A. Chalykh, Oxygen kinetics and mechanism at electrocatalysts on the base of palladium–iron system. Electrochimica acta, 52 (2007) 5108-5118.
    [57] S. Liu, C. Deng, L. Yao, H. Zhong, H. Zhang, The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. Journal of Power Sources, 269 (2014) 225-235.
    [58] H. Xiao, Z.-G. Shao, G. Zhang, Y. Gao, W. Lu, B. Yi, Fe–N–carbon black for the oxygen reduction reaction in sulfuric acid. Carbon, 57 (2013) 443-451.
    [59] H. Yin, S. Liu, C. Zhang, J. Bao, Y. Zheng, M. Han, Z. Dai, Well-coupled graphene and Pd-based bimetallic nanocrystals nanocomposites for electrocatalytic oxygen reduction reaction. ACS applied materials & interfaces, 6 (2014) 2086-2094.
    [60] M.H. Seo, S.M. Choi, D.U. Lee, W.B. Kim, Z. Chen, Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts. Journal of Power Sources, 300 (2015) 1-9.
    [61] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. science, 306 (2004) 666-669.
    [62] L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic Dirac billiard in graphene quantum dots. Science, 320 (2008) 356-358.
    [63] F. Ruffino, F. Giannazzo, A Review on Metal Nanoparticles Nucleation and Growth on/in Graphene. Crystals, 7 (2017) 219.
    [64] M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Munoz-Sandoval, A.G. Cano-Márquez, J.-C. Charlier, Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano today, 5 (2010) 351-372.
    [65] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Progress in materials science, 56 (2011) 1178-1271.
    [66] S. Chaudhary, P. Luthra, A. Kumar, Use of Graphene as a Patch Material in comparison to the copper and other Carbon Nanomaterials. (2013).
    [67] W. Choi, J.-w. Lee, Graphene: synthesis and applications, CRC press, 2016.
    [68] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 35 (2010) 52-71.
    [69] X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, D.H. Chua, Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific reports, 5 (2015) 8458.
    [70] Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 4 (2010) 4324-4330.
    [71] A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chemistry of Materials, 21 (2009) 5004-5006.
    [72] S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Applied Physics Letters, 107 (2015) 051104.
    [73] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.-J. Kim, Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Applied Physics A, 106 (2012) 501-506.
    [74] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters, 10 (2010) 751-758.
    [75] W.I. Hayes, P. Joseph, M.Z. Mughal, P. Papakonstantinou, Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. Journal of solid state electrochemistry, 19 (2015) 361-380.
    [76] H.H. Yang, R.L. McCreery, Elucidation of the Mechanism of Dioxygen Reduction on Metal‐Free Carbon Electrodes. Journal of the Electrochemical Society, 147 (2000) 3420-3428.
    [77] B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Supercapacitor performances of thermally reduced graphene oxide. Journal of power sources, 198 (2012) 423-427.
    [78] S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S.M. Jo, H.-I. Joh, S.-I. Na, Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells. Nanoscale, 6 (2014) 7183-7187.
    [79] S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Efficient synthesis of heteroatom (N or S)‐doped graphene based on ultrathin graphene oxide‐porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 22 (2012) 3634-3640.
    [80] F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics, 26 (2015) 4347-4379.
    [81] M. Fan, Z.-Q. Feng, C. Zhu, X. Chen, C. Chen, J. Yang, D. Sun, Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species. Journal of materials science, 51 (2016) 10323-10349.

    [82] Q. He, Q. Li, S. Khene, X. Ren, F.E. López-Suárez, D. Lozano-Castelló, A. Bueno-López, G. Wu, High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells. The Journal of Physical Chemistry C, 117 (2013) 8697-8707.
    [83] Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, An advanced nitrogen‐doped graphene/cobalt‐embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Advanced Functional Materials, 25 (2015) 872-882.
    [84] R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Materials Chemistry, 20 (2010) 7114-7117.
    [85] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano letters, 11 (2011) 5401-5407.
    [86] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano, 4 (2010) 1321-1326.
    [87] Y. Baskin, L. Meyer, Lattice constants of graphite at low temperatures. Physical Review, 100 (1955) 544.
    [88] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. Rsc Advances, 2 (2012) 4498-4506.
    [89] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir, 26 (2010) 16096-16102.
    [90] D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials, 23 (2011) 1188-1193.
    [91] H.-L. Guo, P. Su, X. Kang, S.-K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. Journal of Materials Chemistry A, 1 (2013) 2248-2255.
    [92] O.O. Fashedemi, K.I. Ozoemena, Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@ Fe/C core–shell nanocatalysts in alkaline medium. Physical Chemistry Chemical Physics, 15 (2013) 20982-20991.
    [93] Y.J. Sa, K. Kwon, J.Y. Cheon, F. Kleitz, S.H. Joo, Ordered mesoporous Co 3 O 4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. Journal of Materials Chemistry A, 1 (2013) 9992-10001.
    [94] B. Ruiz-Camacho, R. Morales-Rodriguez, A.M. Ramírez, Pt–Ag/C catalyst for methanol oxidation and alcohol tolerant cathode in different electrolytes. International Journal of Hydrogen Energy, 41 (2016) 23336-23344.
    [95] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew, 2012.
    [96] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21 (2009) 2950-2956.
    [97] X. Mei, X. Meng, F. Wu, Hydrothermal method for the production of reduced graphene oxide. Physica E: Low-dimensional Systems and Nanostructures, 68 (2015) 81-86.
    [98] J.N. Israelachvili, Intermolecular and surface forces, Academic press, 2011.
    [99] M.A. Molina-García, N.V. Rees, “Metal-free” electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction. Applied Catalysis A: General, 553 (2018) 107-116.
    [100] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19 (2009) 1987-1992.
    [101] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials, 19 (2009) 2782-2789.
    [102] Z. Mo, R. Zheng, H. Peng, H. Liang, S. Liao, Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. Journal of Power Sources, 245 (2014) 801-807.
    [103] Y. Wang, M. Zhang, D. Pan, Y. Li, T. Ma, J. Xie, Nitrogen/sulfur co-doped graphene networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor performance. Electrochimica Acta, 266 (2018) 242-253.
    [104] J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. Acs Catalysis, 2 (2012) 622-631.
    [105] X. Duan, S. Indrawirawan, H. Sun, S. Wang, Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catalysis Today, 249 (2015) 184-191.
    [106] Y.-R. Chen, Q. Wang, X. Bai, Z. Yan, Y. Ning, F. He, Z. Wu, J. Zhang, Unexpected catalytic performance of Fe–M–C (M= N, P, and S) electrocatalysts towards oxygen reduction reaction: surface heteroatoms boost the activity of Fe 2 M/graphene nanocomposites. Dalton Transactions, 46 (2017) 16885-16894.
    [107] J. Tai, J. Hu, Z. Chen, H. Lu, Two-step synthesis of boron and nitrogen co-doped graphene as a synergistically enhanced catalyst for the oxygen reduction reaction. RSC Advances, 4 (2014) 61437-61443.
    [108] T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, D.-Z. Jia, Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Scientific Reports, 5 (2015) 9591.
    [109] C. Fu, C. Song, L. Liu, X. Xie, W. Zhao, Synthesis and properties of nitrogen-doped graphene as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci, 11 (2016) 3876.
    [110] A.E. Vilian, M. Rajkumar, S.-M. Chen, C.-C. Hu, S. Piraman, A promising photoelectrochemical sensor based on a ZnO particle decorated N-doped reduced graphene oxide modified electrode for simultaneous determination of catechol and hydroquinone. RSC Advances, 4 (2014) 48522-48534.
    [111] S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 44 (2006) 1429-1437.
    [112] S.K. Bikkarolla, P. Cumpson, P. Joseph, P. Papakonstantinou, Oxygen reduction reaction by electrochemically reduced graphene oxide. Faraday discussions, 173 (2014) 415-428.
    [113] M. Hassan, E. Haque, A.I. Minett, V.G. Gomes, Co‐Doping of Activated Graphene for Synergistically Enhanced Electrocatalytic Oxygen Reduction Reaction. ChemSusChem, 8 (2015) 4040-4048.
    [114] H. Zhang, T. Kuila, N.H. Kim, D.S. Yu, J.H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon, 69 (2014) 66-78.
    [115] Z. Zhang, S. Yang, M. Dou, H. Liu, L. Gu, F. Wang, Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 6 (2016) 67049-67056.
    [116] J.W. Lee, J.M. Ko, J.-D. Kim, Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochimica Acta, 85 (2012) 459-466.
    [117] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Advanced materials, 24 (2012) 5610-5616.
    [118] L. Chen, R. Du, J. Zhu, Y. Mao, C. Xue, N. Zhang, Y. Hou, J. Zhang, T. Yi, Three‐Dimensional Nitrogen‐Doped Graphene Nanoribbons Aerogel as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. Small, 11 (2015) 1423-1429.
    [119] L. Wang, F. Yin, C. Yao, N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. International journal of hydrogen energy, 39 (2014) 15913-15919.
    [120] Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Nitrogen‐doped graphene foams as metal‐free counter electrodes in high‐performance dye‐sensitized solar cells. Angewandte Chemie International Edition, 51 (2012) 12124-12127.
    [121] M. Jahan, Z. Liu, K.P. Loh, A Graphene oxide and copper‐centered metal organic framework composite as a tri‐functional catalyst for HER, OER, and ORR. Advanced Functional Materials, 23 (2013) 5363-5372.
    [122] K. Mohanraju, L. Cindrella, Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Advances, 4 (2014) 11939-11947.
    [123] Y.-H. Cho, O.-H. Kim, D.Y. Chung, H. Choe, Y.-H. Cho, Y.-E. Sung, PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Applied Catalysis B: Environmental, 154 (2014) 309-315.
    [124] X. Ren, B. Liao, Y. Li, P. Zhang, L. Deng, Y. Gao, Facile synthesis of PdSnCo/nitrogen-doped reduced graphene as a highly active catalyst for lithium-air batteries. Electrochimica Acta, 228 (2017) 36-44.

    [125] F. Ren, C. Wang, C. Zhai, F. Jiang, R. Yue, Y. Du, P. Yang, J. Xu, One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. Journal of Materials Chemistry A, 1 (2013) 7255-7261.
    [126] J.N. Tiwari, W.G. Lee, S. Sultan, M. Yousuf, A.M. Harzandi, V. Vij, K.S. Kim, High-affinity-assisted nanoscale alloys as remarkable bifunctional catalyst for alcohol oxidation and oxygen reduction reactions. ACS nano, 11 (2017) 7729-7735.
    [127] C. He, J. Tao, P.K. Shen, Solid Synthesis of Ultrathin Palladium and Its Alloys’ Nanosheets on RGO with High Catalytic Activity for Oxygen Reduction Reaction. ACS Catalysis, 8 (2018) 910-919.
    [128] M.M. van Schooneveld, C. Campos-Cuerva, J. Pet, J.D. Meeldijk, J. van Rijssel, A. Meijerink, B.H. Erné, F.M. de Groot, Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl. Journal of Nanoparticle Research, 14 (2012) 991.
    [129] Y. Zhai, Z. Zhu, X. Lu, Z. Zhou, J. Shao, H.S. Zhou, Facile synthesis of three-dimensional PtPdNi fused nanoarchitecture as highly active and durable electrocatalyst for methanol oxidation. ACS Applied Energy Materials, 1 (2018) 32-37.
    [130] X. Mei, J. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon, 49 (2011) 5389-5397.
    [131] R. Krishna, E. Titus, O. Okhay, J.C. Gil, J. Ventura, E.V. Ramana, J.J. Gracio, Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles. Int J Electrochem Sci, 9 (2014) e69.
    [132] K. An, S. Alayoglu, N. Musselwhite, K. Na, G.A. Somorjai, Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane. Journal of the American Chemical Society, 136 (2014) 6830-6833.
    [133] K. An, G.A. Somorjai, Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem, 4 (2012) 1512-1524.
    [134] L. Perini, C. Durante, M. Favaro, V. Perazzolo, S. Agnoli, O. Schneider, G. Granozzi, A. Gennaro, Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS applied materials & interfaces, 7 (2015) 1170-1179.
    [135] N.M. Markovic, H.A. Gasteiger, P.N. Ross, Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring diskPt (hkl) studies. The Journal of Physical Chemistry, 100 (1996) 6715-6721.
    [136] D.A. Stevens, J.R. Dahn, Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. Journal of The Electrochemical Society, 150 (2003) A770-A775.
    [137] P. Raghavendra, G.V. Reddy, R. Sivasubramanian, P.S. Chandana, L.S. Sarma, Reduced graphene oxide-supported Pd@ Au bimetallic nano electrocatalyst for enhanced oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 43 (2017) 4125-3135.
    [138] D. Park, M.S. Ahmed, S. Jeon, Covalent functionalization of graphene with 1, 5-diaminonaphthalene and ultrasmall palladium nanoparticles for electrocatalytic oxygen reduction. International Journal of Hydrogen Energy, 42 (2017) 2061-2070.
    [139] D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature materials, 12 (2013) 81.
    [140] L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 354 (2016) 1410-1414.
    [141] V.A. Setyowati, H.C. Huang, C.C. Liu, C.H. Wang, Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochimica Acta, 211 (2016) 933-940.
    [142] C. He, P.K. Shen, Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. Nano Energy, 8 (2014) 52-61.
    [143] G.A. Goenaga, A.L. Roy, N.M. Cantillo, S. Foister, T.A. Zawodzinski, A family of platinum group metal-free catalysts for oxygen reduction in alkaline media. Journal of Power Sources, 395 (2018) 148-157.
    [144] H. Peng, F. Liu, X. Liu, S. Liao, C. You, X. Tian, H. Nan, F. Luo, Z. Fu, P. Huang, Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catalysis, 4 (2014) 3797-3805.
    [145] L.X. Chen, L.Y. Jiang, A.J. Wang, Q.Y. Chen, J.J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochimica Acta, 190 (2016) 872-878.
    [146] Y.N. Liu, X. Zhou, X. Wang, K. Liang, Z.K. Yang, C.C. Shen, M. Imran, S. Sahar, A.W. Xu, Hydrogenation/oxidation induced efficient reversible color switching between methylene blue and leuco-methylene blue. RSC Advances, 7 (2017) 30080-30085.
    [147] J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. Catalysis Science & Technology, 4 (2014) 1742-1748.
    [148] B. Hu, T. Wu, K. Ding, X. Zhou, T. Jiang, B. Han, Seeding growth of Pd/Au bimetallic nanoparticles on highly cross-linked polymer microspheres with ionic liquid and solvent-free hydrogenation. The Journal of Physical Chemistry C, 114 (2010) 3396-3400.
    [149] V.B. Parambhath, R. Nagar, S. Ramaprabhu, Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir, 28 (2012) 7826-7833.
    [150] M. Martins, B. Šljukić, Ö. Metin, M. Sevim, C.A. Sequeira, T. Şener, D.M. Santos, Bimetallic PdM (M= Fe, Ag, Au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells. Journal of Alloys and Compounds, 718 (2017) 204-214.
    [151] M. Yun, M.S. Ahmed, S. Jeon, Thiolated graphene oxide-supported palladium cobalt alloyed nanoparticles as high performance electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 293 (2015) 380-387.
    [152] B. Çelik, Y. Yıldız, H. Sert, E. Erken, Y. Koşkun, F. Şen, Monodispersed palladium–cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone)(PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling. RSC Advances, 6 (2016) 24097-24102.
    [153] Z. Li, Q. Gao, H. Zhang, W. Tian, Y. Tan, W. Qian, Z. Liu, Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction. Scientific reports, 7 (2017) 43352.
    [154] D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society, 132 (2010) 15127-15129.
    [155] S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Nitrogen‐doped carbon nanocages as efficient metal‐free electrocatalysts for oxygen reduction reaction. Advanced materials, 24(2012), 5593-5597.
    [156] Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 44 (2015) 2168-2201.
    [157] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351 (2016) 361-365.
    [158] W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.J. Wan, S.F. Alvi, L. Li, Space‐Confinement‐Induced Synthesis of Pyridinic‐and Pyrrolic‐Nitrogen‐Doped Graphene for the Catalysis of Oxygen Reduction. Angewandte Chemie, 125 (2013) 11971-11975.
    [159] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.I. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 187 (2009) 93-97.
    [160] R. Liu, D. Wu, X. Feng, K. Müllen, Nitrogen‐doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie, 122 (2010) 2619-2623.
    [161] H.R. Colón-Mercado, B.N. Popov, Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 155 (2006) 253-263.
    [162] P.J. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt∕ C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation. Journal of The Electrochemical Society, 152 (2005) A2256-A2271.
    [163] J.E. Choe, M.S. Ahmed, S. Jeon, 3, 4-Ethylenedioxythiophene functionalized graphene with palladium nanoparticles for enhanced electrocatalytic oxygen reduction reaction. Journal of Power Sources, (2015) 211-218.

    QR CODE