簡易檢索 / 詳目顯示

研究生: 黃彥禎
Yen-Zhen Huang
論文名稱: 考量工時平衡機制之多次轉移式司機助手車輛途徑問題
Multiple Transferable Driver Helper Dispatching Problem with Workload Balance
指導教授: 呂志豪
Shih-hao Lu
口試委員: 郭人介
Ren-Jieh Kuo
黃振皓
Chen-Hao Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理系
Department of Business Administration
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 80
中文關鍵詞: 車輛途徑問題轉移式司機助手工時平衡法爬山演算法OR-Tools
外文關鍵詞: Vehicle Routing Problem, Transferable Driver Helper, Workload Balance, Hill Climbing Algorithm, OR-Tools
相關次數: 點閱:335下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為解決物流業者,在國定假日或購物季等高峰期間,司機工作時間
    過長及派送效率不佳等問題。提出兩台卡車搭配一位可轉移助手(2D1H)、三台卡車搭
    配一位可轉移助手(3D1H)和三台卡車搭配兩位可轉移助手(3D2H),模型旨在通過將卡
    車與可轉移助手合作來平衡工作負荷並提高送貨效率。研究結果證明使用助手來輔助
    司機和卡車的優勢,並成功解決了各種情境下的工作負荷平衡問題該應用何種模型。

    在測試不同服務區域、長工時工作點比例和卡車及助手數量後,提供了適當的
    路徑規劃模型。調整司機與助手的出發與抵達時間以消除某一卡車優先抵達交換點須
    等待另一卡車的閒置時間並顯著的提高送貨效率。本研究採用了 Google 的 OR-tools 和
    爬山演算法來優化送貨效率、平衡工作負荷,並為提出了考量工時平衡機制之多次轉
    移式司機助手車輛途徑問題(MTDHWB)獲得可行解。

    研究結果顯示,選擇使用哪種模型取決於物流或快遞公司的對於派送服務的目
    的。提出的 2D1H、3D1H 和 3D2H 模型是平衡工時為目的的最佳選擇,選擇適當的模型取
    決於服務區域、長工時工作點比例和卡車及助手數量。2D1H 和 3D2H 不管在都會區、郊
    區或者鄉村,都是最合的路徑規劃選擇,而當客戶密度不是很高(約為 10%)時,3D1H
    模型可能是一個合適的選項,在相同資源下,2D1H+1D的混和模型會略勝3D1H。然而,
    需要進行多樣且多次的測試以得出對使用助手和車隊有效用、有效益且平衡的助手輔
    助送貨服務。總體而言,本研究有助於提升現今物流品質,且發展新型態的物流派送
    系統。


    This study focused on addressing the issue of working hour overload in the logistics
    industry during peak periods, such as national holidays or shopping seasons. The proposed models, two drivers with one single helper model (2D1H), three drivers with one helper (3D1H)and three drivers with two helpers (3D2H), aimed to balance the workload and enhance the delivery efficiency by assigning trucks to collaborate with transferable helpers. The study demonstrated the advantages of using helpers to support drivers and trucks and successfully solved the issue of workload balance in every scenario.The study also offered appropriate routing models for different service areas, proportions of long-working-time nodes, and numbers of trucks and helpers. Adjusting the departure and arrival times was identified as an important factor in eliminating idle time and significantly enhancing delivery efficiency. The study implemented Google’s OR-tools and the Hill Climbing Algorithm to optimize the delivery efficiency, balance the workload and obtain feasible solutions for the proposed models of Multiple Transferable Driver Helper Dispatching Problem with Workload Balance (MTDHWB).The findings showed that the determination of which model to use depended on the intended purpose of the logistics or delivery company. The proposed models were optimal choices for balancing workload, and the selection of the appropriate model depended on the service area, proportion of long-working-time nodes, and number of trucks and helpers. Both 2D1H and 3D2H are the most suitable and excellent, while the 3D1H model may be a suitable option when the density is not very high, around 10%. However, further testing is required to obtain more insights on the use of helpers and fleets to support delivery service effectively, efficiently, and equivalently. Overall, this study contributes to the development of efficient and effective logistics and delivery systems.

    Table of Contents ABSTRACT ............................................................................................................................................. i 摘要......................................................................................................................................................... ii 致謝........................................................................................................................................................ iii Table of Contents ....................................................................................................................................iv List of Figures..........................................................................................................................................vi List of Tables..........................................................................................................................................vii CHAPTER 1 INTRODUCTION............................................................................................................. 1 1-1 Research Background.................................................................................................................... 1 1-2 Research Objective........................................................................................................................ 4 1-3 Research Scope ............................................................................................................................. 5 1-4 Dissertation Organization.............................................................................................................. 6 CHAPTER 2 LITERATURE REVIEW.................................................................................................. 7 2-1 Vehicle Routing Problem (VRP)................................................................................................... 7 2-2 Vehicle Routing Problem with Workload balance (VRPWB).................................................... 10 2-3 Driver Helper Dispatching Problem (DHDP) ............................................................................. 12 2-4 Heuristic for solving vehicle routing problem ............................................................................ 17 CHAPTER 3 RESEARCH METHODOLOGY.................................................................................... 21 3-1 The assumption of Mathematical model ..................................................................................... 21 3-2 Notations..................................................................................................................................... 22 3-3 Mathematical Formulation .......................................................................................................... 23 3-4 Multiple Transferable Driver Helper Dispatching Problem with Workload Balance (MTDHWB) ........................................................................................................................................................... 25 3-5 MTDHWB with Google's OR-Tools........................................................................................... 29 3-6 Performance Evaluation .............................................................................................................. 37 CHAPTER 4 EXPERIMENTAL RESULTS........................................................................................ 41 4-1 Design of Experiment ................................................................................................................. 41 4-2 Significance................................................................................................................................. 44 4-3 Experimental Results .................................................................................................................. 47 4-3-1 Results of Model 2D1H ....................................................................................................... 47 4-3-2 Results of Model 3D1H ....................................................................................................... 49 4-3-3 Results of Model 3D2H ....................................................................................................... 51 4-4 Summary ..................................................................................................................................... 53 CHAPTER 5 CONCLUSION AND DISCUSSION ............................................................................. 54 5-1 Conclusions and Contribution..................................................................................................... 54 5-2 Managerial Implication ............................................................................................................... 54 5-3 Limitation and Future Research .................................................................................................. 55 References ............................................................................................................................................. 57 Appendix ............................................................................................................................................... 67 List of Figures Fig 1- 1. Research organization.............................................................................................. 6 Fig 2- 1. An illustrate pattern of Vehicle routing problem..................................................... 8 Fig 2- 2. An example of VRPWB workload and routes....................................................... 10 Fig 2- 3. A solution illustration of Two-Echelon Vehicle Routing Problem ....................... 16 Fig 3- 1. Model Illustration of MTDHWB (2D1H).............................................................. 27 Fig 3- 2. Model Illustration of MTDHWB (3D1H).............................................................. 27 Fig 3- 3. Model Illustration of MTDHWB (3D2H).............................................................. 27 Fig 3- 4. The departure and arrival time adjustment with 2 trucks (Before)........................ 28 Fig 3- 5. The departure and arrival time adjustment with 2 trucks (After) .......................... 28 Fig 3- 6. The departure and arrival time adjustment with 3 trucks (Before)........................ 29 Fig 3- 7. The departure and arrival time adjustment with 3 trucks (After) .......................... 29 Fig 3- 8. Cluster first and routing second phrase.................................................................. 30 Fig 3- 9. Select the exchange point for workload balance of 2D1H model.......................... 32 Fig 3- 10. Programming process of 3D1H model................................................................. 35 Fig 3- 11. Programming process of 3D2H model................................................................. 36 Fig 3- 12. The benchmarks comparisons with 2D1H model................................................ 38 Fig 3- 13. The benchmarks comparisons with 3D1H model................................................ 39 Fig 3- 14. The benchmarks comparisons with 3D2H model................................................ 40 Fig 4- 1. The experimental result of 2D1H model at metropolitan area .............................. 48 Fig 4- 2. The experimental result of 2D1H model at suburban area.................................... 48 Fig 4- 3. The experimental result of 2D1H model at rural area........................................... 48 Fig 4- 4. The experimental result of 3D1H model at metropolitan area ............................. 50 Fig 4- 5. The experimental result of 3D1H model at suburban area.................................... 50 Fig 4- 6. The experimental result of 3D1H model at rural area........................................... 50 Fig 4- 7. The experimental result of 3D2H model at metropolitan area .............................. 52 Fig 4- 8. The experimental result of 3D2H model at suburban area.................................... 52 Fig 4- 9. The experimental result of 3D2H model at rural area........................................... 52 List of Tables Table 3- 1. The notations for sets used in the model............................................................ 22 Table 3- 2. The decision variables used in the model .......................................................... 23 Table 3- 3. The fixed parameters required in the model ...................................................... 23 Table 4- 1. Setting of test instances...................................................................................... 42 Table 4- 2. Experimental combinations................................................................................ 42 Table 4- 3. Performance of proposed method of 2 drivers and 1 helper by factors............. 44 Table 4- 4. Performance of proposed method of 3 drivers and 1 helper by factors ............. 45 Table 4- 5. Performance of proposed method of 3 drivers and 2 helpers by factors............ 46

    Baxter, J. (1984). Depot location: A technique for the avoidance of local optima. European
    Journal of Operational Research, 18(2), 208–214. https://doi.org/10.1016/0377-
    2217(84)90186-3
    Benjamin, A. M., & Abdul-Rahman, S. (2016). Driver’s workload comparison in waste
    collection vehicle routing problem. AIP Conference Proceedings.
    https://doi.org/10.1063/1.4966071
    Bodin, L. (1983). Routing and Scheduling of Vehicles and Crews. Computer & Operations
    Research, 10(2), 69–211. https://cir.nii.ac.jp/crid/1570291225647023232
    Bowen, D. (2020). DRO Expectations vs Reality. Info.etruckbizforfxg.com.
    https://info.etruckbizforfxg.com/blog/dro-expectations-vs-reality
    Bowerman, R. L., Calamai, P. H., & Brent Hall, G. (1994). The spacefilling curve with
    optimal partitioning heuristic for the vehicle routing problem. European Journal of
    Operational Research, 76(1), 128–142. https://doi.org/10.1016/0377-2217(94)90011-
    6
    Bowerman, R., Hall, B., & Calamai, P. (1995). A multi-objective optimization approach to
    urban school bus routing: Formulation and solution method. Transportation Research
    Part A: Policy and Practice, 29(2), 107–123. https://doi.org/10.1016/0965-
    8564(94)E0006-U
    Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing
    problem. Computers & Operations Research, 38(1), 140–151.
    https://doi.org/10.1016/j.cor.2010.04.008
    Brandstätter, C., & Reimann, M. (2018). The Line-haul Feeder Vehicle Routing Problem:
    Mathematical model formulation and heuristic approaches. European Journal of
    Operational Research, 270(1), 157–170. https://doi.org/10.1016/j.ejor.2018.03.014
    Chen, H.-K., Chou, H.-W., & Hsu, C.-Y. (2011). The Linehaul-Feeder Vehicle Routing
    Problem with Virtual Depots and Time Windows. Mathematical Problems in
    Engineering, 2011, 1–15. https://doi.org/10.1155/2011/759418
    Christofides, N. (1976). The vehicle routing problem. RAIRO - Operations Research -
    Recherche Opérationnelle, 10(V1), 55–70. https://eudml.org/doc/104635
    Clarke, G., & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a
    Number of Delivery Points. Operations Research, 12(4), 568–581.
    https://doi.org/10.1287/opre.12.4.568
    CLEVON. (2022, June 16). Cleveron Mobility has partnered with DHL Express, the world’s
    leading logistics service provider. Clevon. https://clevon.com/blog/cleveron-mobilityhas-partnered-with-dhl-express-the-worlds-leading-logistics-service-provider/
    Conley, P. (2023, March 29). NRF forecasts as much as a 12% rise in online and other nonstore sales in 2023. Digital Commerce 360.
    https://www.digitalcommerce360.com/2023/03/29/nrf-forecasts-12-percent-rise-inonline-sales-in-2023/
    Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007, January 1). Chapter 6
    Vehicle Routing (C. Barnhart & G. Laporte, Eds.). ScienceDirect; Elsevier.
    https://www.sciencedirect.com/science/article/pii/S0927050706140062
    Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management
    Science, 6(1), 80–91.
    https://econpapers.repec.org/article/inmormnsc/v_3a6_3ay_3a1959_3ai_3a1_3ap_3a8
    0-91.htm
    Deng, P., Amirjamshidi, G., & Roorda, M. (2020). A vehicle routing problem with movement
    synchronization of drones, sidewalk robots, or foot-walkers. Transportation Research
    Procedia, 46, 29–36. https://doi.org/10.1016/j.trpro.2020.03.160
    Domínguez-Martín, B., Rodríguez-Martín, I., & Salazar-González, J.-J. (2018). The driver
    and vehicle routing problem. Computers & Operations Research, 92, 56–64.
    https://doi.org/10.1016/j.cor.2017.12.010
    Drexl, M. (2012). Synchronization in Vehicle Routing—A Survey of VRPs with Multiple
    Synchronization Constraints. Transportation Science, 46(3), 297–316.
    https://doi.org/10.1287/trsc.1110.0400
    Drexl, M. (2014). A Generic Heuristic for Vehicle Routing Problems with Multiple
    Synchronization Constraints. Working Papers.
    https://ideas.repec.org/p/jgu/wpaper/1412.html
    E-Commerce in Taiwan - Outlook of 2023 and Retail Trends - OOSGA. (2023). Oosga.com.
    https://oosga.com/e-commerce/twn/
    Erdoğan, S., & Miller-Hooks, E. (2012). A Green Vehicle Routing Problem. Transportation
    Research Part E: Logistics and Transportation Review, 48(1), 100–114.
    https://doi.org/10.1016/j.tre.2011.08.001
    Events, Uk. M. &. (2022, April 21). VIDEO: Deutsche Post DHL carrier neutral parcel
    lockers at train stations. Parcel and Postal Technology International.
    https://www.parcelandpostaltechnologyinternational.com/analysis/video-deutschepost-dhl-carrier-neutral-parcel-lockers-at-train-stations.html
    Filipec, M., Skrlec, D., & Krajcar, S. (1998, October 1). An efficient implementation of
    genetic algorithms for constrained vehicle routing problem. IEEE Xplore.
    https://doi.org/10.1109/ICSMC.1998.724987
    Foa, S., Coppola, C., Grani, G., & Palagi, L. (2022). Solving the vehicle routing problem with
    deep reinforcement learning. ArXiv:2208.00202 [Cs, Math].
    https://arxiv.org/abs/2208.00202
    Gao, J., Zheng, X., Gao, F., Tong, X., & Han, Q. (2022). Heterogeneous Multitype Fleet
    Green Vehicle Path Planning of Automated Guided Vehicle with Time Windows in
    Flexible Manufacturing System. Machines, 10(3), 197.
    https://doi.org/10.3390/machines10030197
    Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal
    of Operational Research, 88(1), 3–12. https://doi.org/10.1016/0377-2217(95)00050-x
    Goel, A., Archetti, C., & Savelsbergh, M. (2012). Truck driver scheduling in Australia.
    Computers & Operations Research, 39(5), 1122–1132.
    https://doi.org/10.1016/j.cor.2011.05.021
    Goel, A., & Rousseau, L.-M. (2011). Truck driver scheduling in Canada. Journal of
    Scheduling. https://doi.org/10.1007/s10951-011-0249-6
    Goetschalckx, M., & Jacobs-Blecha, C. (1989). The vehicle routing problem with backhauls.
    European Journal of Operational Research, 42(1), 39–51.
    https://econpapers.repec.org/article/eeeejores/v_3a42_3ay_3a1989_3ai_3a1_3ap_3a39
    -51.htm
    Hemmelmayr, V. C., Cordeau, J.-F., & Crainic, T. G. (2012). An adaptive large neighborhood
    search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics.
    Computers & Operations Research, 39(12), 3215–3228.
    https://doi.org/10.1016/j.cor.2012.04.007
    Holland, J. H. (1992, August 29). Adaptation in Natural and Artificial Systems. MIT Press.
    https://mitpress.mit.edu/9780262581110/adaptation-in-natural-and-artificial-systems/
    Hoos, H. H., & Stützle, T. (2005, January 1). 2 - SLS METHODS (H. H. Hoos & T. Stützle,
    Eds.). ScienceDirect ; Morgan Kaufmann.
    https://www.sciencedirect.com/science/article/pii/B9781558608726500196
    Howell, E. (2023, April 7). Hill Climbing Optimization Algorithm: A Simple Beginner’s
    Guide. Medium. https://towardsdatascience.com/hill-climbing-optimization-algorithmsimply-explained-dbf1e1e3cf6c
    Ibarra-Rojas, O. J., & Silva-Soto, Y. (2021). Vehicle routing problem considering equity of
    demand satisfaction. Optimization Letters. https://doi.org/10.1007/s11590-021-01704-
    5
    Inman, D. (2022, November 29). Record 196.7 Million Consumers Shop Over Thanksgiving
    Holiday Weekend. NRF. https://nrf.com/media-center/press-releases/record-1967-
    million-consumers-shop-over-thanksgiving-holiday-weekend
    InsightAce Analytic Pvt. LTd. (2023, March 24). Last Mile Delivery Market to Reach USD
    357.45 Billion to 2031 | Reveals Exclusive InsightAce Study. Yahoo Finance.
    https://finance.yahoo.com/news/last-mile-delivery-market-reach130700059.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmN
    vbS8&guce_referrer_sig=AQAAALqhMKekg7z7so5EIwlga7p2MLuSE5Scg78D7A6
    rWoRzmQXCSIQhaD6XVEG9Ku6dDeERXLQ26WXfMXVfh-vwB8PxUI6SmVJAr
    James, J., & Felix, R. (2020, January 24). Shipping Carriers Compared: DHL Vs. FedEx Vs.
    UPS in 2020. Lateshipment.com Blog. https://www.lateshipment.com/blog/overviewof-fedex-ups-and-dhl/
    Jozefowiez, N., Semet, F., & Talbi, E.-G. (2002). Parallel and Hybrid Models for Multiobjective Optimization: Application to the Vehicle Routing Problem. Parallel Problem
    Solving from Nature — PPSN VII, 271–280. https://doi.org/10.1007/3-540-45712-
    7_26
    Jozefowiez, N., Semet, F., & Talbi, E.-G. (2009). An evolutionary algorithm for the vehicle
    routing problem with route balancing. European Journal of Operational Research,
    195(3), 761–769. https://doi.org/10.1016/j.ejor.2007.06.065
    Julia, S., & Chandana, K. S. (2020). A NEW APPROACH FOR SOLVING THE
    DISRUPTION IN VEHICLE ROUTING PROBLEM DURING DELIVERY.
    Современные информационные технологии и ИТ-образование, 16(2), 371–378.
    https://cyberleninka.ru/article/n/a-new-approach-for-solving-the-disruption-in-vehicle-
    routing-problem-during-delivery
    Kalakanti, A. K., Verma, S., Paul, T., & Yoshida, T. (2019, September 1). RL SolVeR Pro:
    Reinforcement Learning for Solving Vehicle Routing Problem. IEEE Xplore.
    https://doi.org/10.1109/AiDAS47888.2019.8970890
    KANAZAWA, H., SUZUKI, M., ONODA, T., & YOKOZAWA, N. (2006). Excess workload
    and sleep-related symptoms among commercial long-haul truck drivers. Sleep and
    Biological Rhythms, 4(2), 121–128. https://doi.org/10.1111/j.1479-8425.2006.00218.x
    Keenan, M. (2022, November 14). Global Ecommerce Statistics and Trends to Launch Your
    Business Beyond Borders. Enterprise Ecommerce Blog - Enterprise Business
    Marketing, News, Tips & More. https://www.shopify.com/enterprise/globalecommerce-statistics
    Keskinturk, T., & Yildirim, M. B. (2011, June 1). A genetic algorithm metaheuristic for
    bakery distribution vehicle routing problem with load balancing. IEEE Xplore.
    https://doi.org/10.1109/INISTA.2011.5946077
    Kok, A. L., Meyer, C. M., Kopfer, H., & Schutten, J. M. J. (2010). A Dynamic Programming
    Heuristic for the Vehicle Routing Problem with Time Windows and European
    Community Social Legislation. Transportation Science, 44(4), 442–454.
    https://www.jstor.org/stable/25769513
    Korosec, K. (2021, May 29). Walmart to launch autonomous delivery service with Ford and
    Argo AI. TechCrunch. https://techcrunch.com/2021/09/15/walmart-to-launchautonomous-delivery-service-with-ford-and-argo-ai/
    Ku, Y.-C. (2022, June 9). Vehicle Routing Problem with Transferable Hybrid Driver Helper.
    Ndltd.ncl.edu.tw. https://hdl.handle.net/11296/kq58v3
    Kumar, D. A., & Rangan, C. P. (2022). Approximation algorithms for the Traveling Salesman
    Problem with range condition. RAIRO Theor. Informatics Appl.
    https://www.semanticscholar.org/paper/Approximation-algorithms-for-the-TravelingSalesman-Kumar-Rangan/74bbae37a226fd982f51286a0af0ee4c3afe5990
    Kuo, R. J., Edbert, E., Zulvia, F. E., & Lu, S.-H. (2023). Applying NSGA-II to vehicle
    routing problem with drones considering makespan and carbon emission. Expert
    Systems with Applications, 221, 119777. https://doi.org/10.1016/j.eswa.2023.119777
    Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate
    algorithms. European Journal of Operational Research, 59(3), 345–358.
    https://doi.org/10.1016/0377-2217(92)90192-c
    Laporte, G., Ropke, S., & Vidal, T. (2014). Chapter 4: Heuristics for the Vehicle Routing
    Problem. Vehicle Routing, 87–116. https://doi.org/10.1137/1.9781611973594.ch4
    Lee, T., & Ueng, J. (1999, December 1). A study of vehicle routing problems with load‐
    balancing.
    https://www.emerald.com/insight/content/doi/10.1108/09600039910300019/full/html
    Li, J., Fang, Y., & Tang, N. (2022). A cluster-based optimization framework for vehicle
    routing problem with workload balance. Computers & Industrial Engineering, 169,
    108221. https://doi.org/10.1016/j.cie.2022.108221
    Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem. Bell System
    Technical Journal, 44(10), 2245–2269. https://doi.org/10.1002/j.1538-
    7305.1965.tb04146.x
    Lin, S.-W., Yu, V. F., & Chou, S.-Y. (2009). Solving the truck and trailer routing problem
    based on a simulated annealing heuristic. Computers & Operations Research, 36(5),
    1683–1692. https://doi.org/10.1016/j.cor.2008.04.005
    Lin, S.-W., Yu, V. F., & Chou, S.-Y. (2010). A note on the truck and trailer routing problem.
    Expert Systems with Applications, 37(1), 899–903.
    https://doi.org/10.1016/j.eswa.2009.06.077
    Linfati, R., Yáñez-Concha, F., & Escobar, J. W. (2022). Mathematical Models for the Vehicle
    Routing Problem by Considering Balancing Load and Customer Compactness.
    Sustainability, 14(19), 12937. https://doi.org/10.3390/su141912937
    López-Sánchez, A. D., Hernández-Díaz, A. G., Vigo, D., Caballero, R., & Molina, J. (2014).
    A multi-start algorithm for a balanced real-world Open Vehicle Routing Problem.
    European Journal of Operational Research, 238(1), 104–113.
    https://doi.org/10.1016/j.ejor.2014.04.008
    Lu, S., Suzuki, Y., & Clottey, T. (2020). The Last Mile: Managing Driver Helper Dispatching
    for Package Delivery Services. Journal of Business Logistics.
    https://doi.org/10.1111/jbl.12242
    Lu, S., Suzuki, Y., & Clottey, T. (2022). Improving the efficiency of last‐mile package
    deliveries using hybrid driver helpers. Decision Sciences.
    https://doi.org/10.1111/deci.12559
    Lu, S.-H. (2017). Driver Helper Dispatching Problems: Three Essays - ProQuest.
    Www.proquest.com. https://www.proquest.com/docview/1917793972?pqorigsite=gscholar&fromopenview=true
    Lu, S.-H., Kuo, R. J., Ho, Y.-T., & Nguyen, A.-T. (2022). Improving the efficiency of lastmile delivery with the flexible drones traveling salesman problem. Expert Systems
    with Applications, 209, 118351. https://doi.org/10.1016/j.eswa.2022.118351
    Mahajan, K., Velaga, N. R., Kumar, A., Choudhary, A., & Choudhary, P. (2019). Effects of
    driver work-rest patterns, lifestyle and payment incentives on long-haul truck driver
    sleepiness. Transportation Research Part F: Traffic Psychology and Behaviour, 60,
    366–382. https://doi.org/10.1016/j.trf.2018.10.028
    Mancini, S. (2016). A real-life Multi Depot Multi Period Vehicle Routing Problem with a
    Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based
    Matheuristic. Transportation Research Part C: Emerging Technologies, 70, 100–112.
    https://doi.org/10.1016/j.trc.2015.06.016
    Mancini, S., Gansterer, M., & Hartl, R. F. (2021). The collaborative consistent vehicle routing
    problem with workload balance. European Journal of Operational Research, 293(3),
    955–965. https://doi.org/10.1016/j.ejor.2020.12.064
    Matl, P., Hartl, R. F., & Vidal, T. (2018). Workload Equity in Vehicle Routing Problems: A
    Survey and Analysis. Transportation Science, 52(2), 239–260.
    https://doi.org/10.1287/trsc.2017.0744
    MICH, D. (2021, September 15). Ford, Argo AI, and Walmart to Launch Autonomous
    Vehicle Delivery Service in Three U.S. Cities | Ford Media Center. Media.ford.com.
    https://media.ford.com/content/fordmedia/fna/us/en/news/2021/09/15/ford-argo-aiand-walmart.html
    Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
    Optimization of drone-assisted parcel delivery. Transportation Research Part C:
    Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005
    Nair, T. R. G., & Sooda, K. (2010). Comparison of Genetic Algorithm and Simulated
    Annealing Technique for Optimal Path Selection In Network Routing.
    ArXiv:1001.3920 [Cs]. https://arxiv.org/abs/1001.3920
    Nuha, H., Wati, P. E. D. K., & Widiasih, W. (2018). A Comparison of Exact Method -
    Metaheuristic Method in Determination for Vehicle Routing Problem. MATEC Web
    of Conferences, 204, 02017. https://doi.org/10.1051/matecconf/201820402017
    Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the
    vehicle routing problem. Annals of Operations Research, 41(4), 421–451.
    https://doi.org/10.1007/bf02023004
    Pisinger, D., & Ropke, S. (2018). Large Neighborhood Search. Handbook of Metaheuristics,
    99–127. https://doi.org/10.1007/978-3-319-91086-4_4
    Pullen, H., & Webb, M. (1967, November 29). A Computer Application to a Transport
    Scheduling Problem. Computer Journal, 10, 10-13. - References - Scientific Research
    Publishing. Www.scirp.org.
    https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?r
    eferenceid=1429162
    Rhodes, K., Nehring, R., Wilk, B., & Patel, N. (2007, April 1). UPS Helper Dispatch
    Analysis. IEEE Xplore. https://doi.org/10.1109/SIEDS.2007.4374034
    Rocki, K., & Suda, R. (2012, May 1). Accelerating 2-opt and 3-opt Local Search Using GPU
    in the Travelling Salesman Problem. IEEE Xplore.
    https://doi.org/10.1109/CCGrid.2012.133
    Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search
    metaheuristic for the vehicle routing problem with drones. Transportation Research
    Part C: Emerging Technologies, 102, 289–315.
    https://doi.org/10.1016/j.trc.2019.02.018
    Sartori, C., Smet, P., Greet, V., & Berghe. (2021). Efficient Duration-Based Workload
    Balancing for Interdependent Vehicle Routes.
    https://doi.org/10.4230/OASIcs.ATMOS.2021.1
    Shiyi, Y., Jianwen, F., Feng, C., & Xin, Z. (2020). Truck and Trailer Routing Problem
    Solving by a Backtracking Search Algorithm. Journal of Systems Science and
    Information, 8(3), 253–272. https://ideas.repec.org/a/bpj/jossai/v8y2020i3p253-
    272n4.html
    Sivaramkumar, V., Thansekhar, M., Saravanan, R., & Miruna Joe Amali, S. (2015). Multiobjective vehicle routing problem with time windows: Improving customer
    satisfaction by considering gap time. Proceedings of the Institution of Mechanical
    Engineers, Part B: Journal of Engineering Manufacture, 231(7), 1248–1263.
    https://doi.org/10.1177/0954405415586608
    Surana, P. (2019). Benchmarking Optimization Algorithms for Capacitated Vehicle Routing
    Problems. Master’s Projects. https://doi.org/10.31979/etd.cjjg-7wvf
    Tan, K. C., Chew, Y. H., & Lee, L. H. (2005). A Hybrid Multiobjective Evolutionary
    Algorithm for Solving Vehicle Routing Problem with Time Windows. Computational
    Optimization and Applications, 34(1), 115–151. https://doi.org/10.1007/s10589-005-
    3070-3
    Tan, S.-Y., & Yeh, W.-C. (2021). The Vehicle Routing Problem: State-of-the-Art
    Classification and Review. Applied Sciences, 11(21), 10295.
    https://doi.org/10.3390/app112110295
    team, A. (2021, May 7). Vehicle Routing Software Problem: How to Effectively Solve.
    Altamira. https://www.altamira.ai/blog/how-to-solve-the-vehicle-routing-problem/
    UNCTAD. (2021, March 15). How COVID-19 triggered the digital and e-commerce turning
    point | UNCTAD. UNCTAD. https://unctad.org/news/how-covid-19-triggered-digitaland-e-commerce-turning-point
    UPS. (2020, January 29). UPS To Enhance ORION With Continuous Delivery Route
    Optimization | About UPS. About UPS-US.
    https://about.ups.com/us/en/newsroom/press-releases/innovation-driven/ups-toenhance-orion-with-continuous-delivery-route-optimization.html
    Weber, A. N., & Badenhorst-Weiss, J. A. (2018). The last-mile logistical challenges of an
    omnichannel grocery retailer: A South African perspective. Journal of Transport and
    Supply Chain Management, 12. https://doi.org/10.4102/jtscm.v12i0.398
    Wen, M., Cordeau, J.-F., Laporte, G., & Larsen, J. (2010). The dynamic multi-period vehicle
    routing problem. Computers & Operations Research, 37(9), 1615–1623.
    https://doi.org/10.1016/j.cor.2009.12.002
    Williamson, Z. (2022, July 18). UPS saving millions at the pump, emphasizes importance of
    planning ahead. KMTV 3 News Now Omaha.
    https://www.3newsnow.com/news/local-news/ups-saving-millions-at-the-pumpemphasizes-importance-of-planning-ahead
    Woods, C. (2023, February 21). The benefits of last mile delivery for businesses. Locate2u.
    https://www.locate2u.com/last-mile-delivery/benefits-of-last-mile-delivery/
    Wren, A., & Carr, J. D. (1971). COMPUTERS IN TRANSPORT PLANNING AND
    OPERATION. Trid.trb.org. https://trid.trb.org/view/128808
    Wren, A., & Holliday, A. (1972). Computer Scheduling of Vehicles from One or More
    Depots to a Number of Delivery Points. Operational Research Quarterly (1970-1977),
    23(3), 333. https://doi.org/10.2307/3007888
    Xu, R., Guo, R., & Jia, Q. (2019). A Novel Hybrid Metaheuristic for Solving Automobile Part
    Delivery Logistics With Clustering Customer Distribution. IEEE Access, 7, 106075–
    106091. https://doi.org/10.1109/access.2019.2931622

    QR CODE