簡易檢索 / 詳目顯示

研究生: 胡旻妊
MIN-JEN HU
論文名稱: VUV/TiO2系統應用於氧化甲苯與離子化空氣特性之研究
Study on Oxidation Toluene and Ionization Air Characteristics of VUV/TiO2 System
指導教授: 胡哲嘉
Che-Chia Hu
曾堯宣
Yao-Hsuan Tseng
口試委員: 胡哲嘉
Che-chia Hu
曾堯宣
Yao-Hsuan Tseng
何郡軒
Jinn-Hsuan Ho
蘇子森
Tzu-Sen Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 83
中文關鍵詞: 真空紫外線/二氧化鈦甲苯亞甲基藍脫水
外文關鍵詞: Vacuum Ultraviolet/Titanium Dioxide, toluene, methylene blue, dehumidification
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 II Abstract IV 致謝 VI 目錄 VIII 圖目錄 X 表目錄 XII 第一章 緒論 2 1.1 前言 2 1.2 研究動機 3 第二章 文獻回顧 6 2.1 揮發性有機化合物降解之方法 6 2.2 揮發性有機化合物簡介 6 2.3 二氧化鈦簡介 7 2.4 光催化反應 8 2.5 光水離子化技術 11 2.6 光催化高級氧化程序 12 2.7 自由基之影響 19 第三章 24 3.1 實驗規劃 24 3.2 實驗藥品與儀器 25 3.3 光催化降解甲苯效能測試 29 3.4 PICT出口氣流脫色效能測試 34 3.5 環境淨化器脫水測試 34 3.6 蔬果保鮮測試 35 第四章 結果與討論 36 4.1 甲苯批次系統光降解測試 36 4.2 表面汙染物去除分析 43 4.3 環境淨化器脫水測試 47 4.4 蔬果保鮮測試 55 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 61 參考資料 63

[1] 翁興中,劉妙生,蘇艾,劉聖幸「高科技電子業揮發性有機物污染管制理論與實務」 Journal of China Institute of Technology, 30 (2004) 185-207.
[2] X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, and J. Ran, “Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review,” Separation and Purification Technology, vol. 235 (2020).
[3] Y. Lu, J. Liu, B. Lu, A. Jiang, and C. Wan, “Study on the removal of indoor VOCs using biotechnology,” J Hazard Mater, 182(1-3) (2010) 204-9.
[4] S. M. Woodley, and C. R. A. Catlow, “Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm,” Computational Materials Science, 45(1), (2009) 84-95.
[5] F. M. Hossain, L. Sheppard, J. Nowotny, and G. E. Murch, “Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material,” Journal of Physics and Chemistry of Solids, 69(7) (2008) 1820-1828.
[6] S.-D. Mo, and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Physical Review B, 51(19) (1995) 13023-13032.
[7] R. Thiruvenkatachari, S. Vigneswaran, and I. S. Moon, “A review on UV/TiO 2 photocatalytic oxidation process (Journal Review),” Korean Journal of Chemical Engineering, 25 (2008) 64-72, 2008.
[8] C. D. Jaeger, and A. J. Bard, “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems,” Journal of Physical Chemistry, 83(24) (1979) 3146-3152.
[9] M. Tasbihi, I. Călin, A. Šuligoj, M. Fanetti, and U. Lavrenčič Štangar, “Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth,” Journal of Photochemistry and Photobiology A: Chemistry, 336 (2017) 89-97.
[10] W. Wang, J. Zhang, F. Chen, D. He, and M. Anpo, “Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles,” Journal of Colloid and Interface Science, 323(1) (2008) 182-186.
[11] X. Li, L. Wang, and X. Lu, “Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation,” Journal of Hazardous Materials, 177(1) (2010) 639-647.
[12] T. D. Pham, and B. K. Lee, “Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by Ag-TiO2/GF under visible light,” J Colloid Interface Sci, 428 (2014) 24-31.
[13] Z. Shayegan, C.-S. Lee, and F. Haghighat, “TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review,” Chemical Engineering Journal, 334 (2018) 2408-2439.
[14] Z. Zhu, Y. Zhang, Y. Zhang, Y. Shang, X. Zhang, and Y. Wen, “Preparation of PAN@TiO2 Nanofibers for Fruit Packaging Materials with Efficient Photocatalytic Degradation of Ethylene,” Materials (Basel), 12(6) (2019).
[15] J. M. Roscoe, and J. P. D. Abbatt, “Diffuse Reflectance FTIR Study of the Interaction of Alumina Surfaces with Ozone and Water Vapor,” The Journal of Physical Chemistry A, 109(40) (2005) 9028-9034.
[16] S. K. Ignatov, P. G. Sennikov, H.-W. Jacobi, A. G. Razuvaev, and O. Schrems, “Surface species formed during UV photolysis of ozone adsorbed on water ice films at 80 K. A combined RA-FTIR and DFT study,” Physical Chemistry Chemical Physics, 5(3) (2003) 496-505.
[17] Hsiao-Chien Chen, Bing-Joe Hwang, Fu-Der Mai, Yu-Chuan Liu, Chun-Mao Lin, Hsien-Shou Kuo, Duen-Suey Chou, Ming-Jer Lee, Kuang-Hsuan Yang, Chung-Chin Yu, z Jiun-Rong Chen, Tsui-Yun Lo, Hui-Yen Tsai, Chih-Ping Yang, Chi Wang, Hsiao-Ting Hsieh, and J. Rick, “Active and Stable Liquid Water Innovatively Prepared Using Resonantly Illuminated Gold Nanoparticles,” 8(3) (2014) 2704-2713.
[18] L. Khachatryan, E. Vejerano, S. Lomnicki, and B. Dellinger, “Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions,” Environ Sci Technol, 45(19) (2011) 8559-66.
[19] C. d. M. da Trindade, S. W. da Silva, J. P. Bortolozzi, E. D. Banús, A. M. Bernardes, and M. A. Ulla, “Synthesis and characterization of TiO2 films onto AISI 304 metallic meshes and their application in the decomposition of the endocrine-disrupting alkylphenolic chemicals,” Applied Surface Science, 457 (2018) 644-654.
[20] 泉耀科技股份有限公司,「TW-高濃度光觸媒水溶膠」, https://onidtech.com.tw/tw-xx/.
[21] M. Namdari, C.-S. Lee, and F. Haghighat, “Active ozone removal technologies for a safe indoor environment: A comprehensive review,” Building and Environment, 187 (2021) 107370.
[22] H. Huang, H. Lu, H. Huang, L. Wang, J. Zhang, and D. Y. Leung, “Recent development of VUV-based processes for air pollutant degradation,” Frontiers in Environmental Science, 4 (2016) 17.
[23] Y. Zhan, J. Ji, H. Huang, M. He, D. Y. C. Leung, S. Liu, Y. Shu, Q. Feng, R. Xie, R. Fang, and X. Ye, “A facile VUV/H2O system without auxiliary substances for efficient degradation of gaseous toluene,” Chemical Engineering Journal, 334 (2018) 1422-1429.
[24] J. Zhang, P. Zhou, J. Liu, and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2,” Phys Chem Chem Phys, 16(38) (2014) 20382-6.
[25] S. Sun, J. Ding, J. Bao, C. Gao, Z. Qi, X. Yang, B. He, and C. Li, “Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism,” Applied Surface Science, 258(12) (2012) 5031-5037.
[26] B. Xin, L. Jing, Z. Ren, B. Wang, and H. Fu, “Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2,” The Journal of Physical Chemistry B, 109(7) (2005) 2805-2809.
[27] 蔡沛珺,「錳改質二氧化鈦於真空紫外光下降解甲苯之研究」,國立臺灣科技大學化學工程系碩士論文 (2013)。
[28] S.-R. Eun, S. Mavengere, and J.-S. Kim, “Preparation of Ag-TiO2/Sr4Al14O25: Eu2+, Dy3+ photocatalyst on phosphor beads and its photoreaction characteristics,” Catalysts, 11(2) (2021) 261.
[29] K. H. Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, “Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds,” Applied Surface Science, 319 (2014) 128-135.
[30] J.-L. Clément, N. Ferré, D. Siri, H. Karoui, A. Rockenbauer, and P. Tordo, “Assignment of the EPR Spectrum of 5,5-Dimethyl-1-pyrroline N-Oxide (DMPO) Superoxide Spin Adduct,” The Journal of Organic Chemistry, 70(4) (2005) 1198-1203.
[31] G. M. Rosen, A. Beselman, P. Tsai, S. Pou, C. Mailer, K. Ichikawa, B. H. Robinson, R. Nielsen, H. J. Halpern, and A. D. MacKerell, “Influence of Conformation on the EPR Spectrum of 5,5-Dimethyl-1-hydroperoxy-1-pyrrolidinyloxyl:  A Spin Trapped Adduct of Superoxide,” The Journal of Organic Chemistry, 69(4) (2004) 1321-1330.
[32] L. Droguet, A. Grimaud, O. Fontaine, and J. M. Tarascon, “Water‐in‐Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality,” Advanced Energy Materials, 10(43) (2020) 2002440.
[33] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, and K. Xu, “"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries,” Science, 350(6263) (2015) 938-43.
[34] J. Xie, Z. Liang, and Y.-C. Lu, “Molecular crowding electrolytes for high-voltage aqueous batteries,” Nature Materials, 19(9) (2020) 1006-1011.
[35] M. A. Allodi, M. E. Dunn, J. Livada, K. N. Kirschner, and G. C. Shields, “Do Hydroxyl Radical−Water Clusters, OH(H2O)n, n = 1−5, Exist in the Atmosphere?,” The Journal of Physical Chemistry A, 110(49) (2006) 13283-13289.
[36] Y. Ohshima, K. Sato, Y. Sumiyoshi, and Y. Endo, “Rotational Spectrum and Hydrogen Bonding of the H2O−HO Radical Complex,” Journal of the American Chemical Society, 127(4) (2005) 1108-1109.
[37] H. Tachikawa, and S. Abe, “Structures and excitation energies of ozone–water clusters O3(H2O)n (n=1–4),” Inorganica Chimica Acta, 358(2) (2005) 288-294.
[38] M. J. Jordán, K. Tandon, P. E. Shaw, and K. L. Goodner, “Aromatic Profile of Aqueous Banana Essence and Banana Fruit by Gas Chromatography−Mass Spectrometry (GC-MS) and Gas Chromatography−Olfactometry (GC-O),” Journal of Agricultural and Food Chemistry, 49(10) (2001) 4813-4817.
[39] 田世平,「果實成熟和衰老的分子調控機制」,植物學報,48(5) (2013) 481-488。
[40] S. D. T. Maduwanthi, and R. A. U. J. Marapana, “Comparative Study on Aroma Volatiles, Organic Acids, and Sugars of Ambul Banana (<i>Musa acuminata</i>, AAB) Treated with Induced Ripening Agents,” Journal of Food Quality, 2019 (2019) 1-9.
[41] S. D. T. Maduwanthi, and R. A. U. J. Marapana, “Induced Ripening Agents and Their Effect on Fruit Quality of Banana,” International Journal of Food Science, 2019 (2019) 1-8.

無法下載圖示 全文公開日期 2033/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE