簡易檢索 / 詳目顯示

研究生: 裴紹凱
Shao-kai Pei
論文名稱: 二氧化銥奈米桿在還原後之表面現象分析及氣體感測性質之研究
Effect of reduction iridium dioxide nanostructure for surface analysis and gas sensing properties
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 蔡大翔
Dah-Shyang Tsai
施正雄
Shih, Jeng-Shong
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 113
中文關鍵詞: 二氧化銥QCM氣體感測
外文關鍵詞: IrO2, QCM, Gas sensor
相關次數: 點閱:230下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用化學氣相沉積(MOCVD)方式,在鍍於石英晶片上之金電極表面沉積二氧化銥,以此製作QCM質量式感測器,針對酸類及胺類氣體進行感測,發現有不錯的感測靈敏度,其偵測濃度可達數個ppm。
    當我們將IrO2置於高真空環境下,以不同還原溫度(450 oC~600 oC)及還原時間(30分鐘~90分鐘),可使IrO2 部份去氧還原,利用XRD、XPS、拉曼光譜、SEM進行還原前後的表面分析。並結合模擬計算探討其吸附與脫附機制。
    由XPS分析來看,二氧化銥還原前表面組成為IrO2 / IrO3 / Ir(OH)x,感測1000ppm丙酸所得訊號為160Hz、可逆性73%;在450 oC進行還原,表面組成不變,丙酸訊號仍為160Hz,但可逆性為88%;還原溫度提高至550 oC,則表面還原成Ir/IrO2,丙酸訊號提高為270Hz,可逆性達98%。即其靈敏度比還原高,且可逆性更佳。
    當還原溫度再提高至600 oC時,丙酸訊號提高至320Hz,但可逆性降低至32%。為了改善可逆程度,我們預先在金電極上濺鍍ㄧ層Ti薄膜,並在相同的熱還原處裡條件下將IrO2脫氧,發現可逆性可大幅提升至80%。


    Nanostructured IrO2 crystals are grown on a gold-coated quartz substrate by metal organic chemical vapor deposition (MOCVD). The resultant quartz crystal microbalance (QCM) sensor shows a good gas sensitivity towards carboxylic acid and amine vapors at the ppm level.
    When the oxide is heated at 450oC~600oC in high vacuum, the IrO2 is partially reduced by thermal decomposition. The composition and the morphology of the sample surface before and after reduction are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Molecular simulation is also used to explain the mechanism of adsorption and desorption.
    From XPS analysis, we find that the sample surface composition is IrO2/IrO3/Ir(OH)x before reduction. Upon exposure to 1000 ppm of propanic acid vapors, the QCM frequency shift is found to be 160 Hz with 73% reversibility when desorbed; After a reduction at 450oC, the surface composition and the QCM frequency shift remain the same, while the reversibility becomes 88%; When the reduction is carried out at 550 oC, the surface is reduced to become Ir/IrO2, and the Ir/IrO2 sensor shows a higher gas sensitivity (~270 Hz) and better reversibility (~98%) as compared to the IrO2/IrO3/Ir(OH)x sensor.
    When reduction temperature is further increased to 600oC, the sensor shows an even higher sensitivity (~320Hz) but lower reversibility (~32%). However, if a thin Ti layer onto the Au electrode before growing the IrO2 crystals, followed by the 600oC reduction treatment, then the reversibility of the sensor can be improved to about 80%.

    中文摘要...I 英文摘要..III 致謝..... V 目錄..... VII 圖目錄... XI 表目錄... XVI 第一章 緒論...... 1 1.1 氣體感測器簡介....... 1 1.2 半導體金屬氧化物感測材料...... 2 1.3 氣體感測器的種類..... 2 1.4 研究動機.............4 第二章 文獻回顧.........6 2.1 IrO2晶體之結構....... 6 2.2 IrO2晶體導電性....... 7 2.3 IrO2晶體成長......... 8 2.4 IrO2之場發射(Field Emission)特性....... 10 2.5 IrO2對氣體感測之應用.......... 11 2.6 石英晶體微量天平(Quartz Crystal Microbalance).. 12 2.6.1石英震盪器之壓電性(Piezoelectricity)....... 12 2.6.2 QCM偵測之理論模式建立..... 14 2.7 金屬對金屬氧化物性質的影響.... 16 2.8 金屬氧化物的還原脫氧...........18 2.8.1 脫氧位置探討..........................................18 2.8.2 IrO2脫氧還原之反應機制....................................20 2.8.3分子吸附於金屬氧化物表面之反應機制......................... 22 2.9 拉曼光譜法介紹......................................... 22 2.9.1 拉曼光譜法與紅外線光譜法的差異................................ 22 2.9.2 脫氧還原前/後的拉曼光譜....................................... 23 第三章 實驗方法及步驟.......25 3.1實驗藥品.......25 3.2 儀器設備......25 3.3 實驗流程......29 3.4 石英震盪晶體處理................................................................... 30 3.5 以MOCVD法製備IrO2 / D-IrO2薄膜步驟.......................... 31 3.6 結構分析與性質量測儀器........................................... 33 3.7 QCM(Quartz Crystal Membrane)裝置....................................... 35 3.8 參數定義........................................................... 37 第四章 結果與討論.....39 4.0 實驗目的...............................................39 4.1 X-ray分析..........................................................39 4.1.1還原溫度之影響.............................................. 39 4.1.2還原時間之影響................................................... 43 4.2 SEM分析....................................................... 46 4.2.1 還原溫度之影響.......................................... 46 4.2.2 還原時間之影響............................................ 46 4.3 拉曼光譜分析.................................................49 4.3.1還原溫度之影響............................................ 49 4.3.2還原時間之影響.............................................54 4.4 XPS分析................................................................59 4.4.1 還原溫度之影響............................................... 59 4.4.2 還原時間之影響............................................... 65 4.4.2 XPS縱深分析.....................................................69 4.5 氣體感測........................................................71 4.5.1 IrO2對丙酸之氣體感測.......................................72 4.5.1.1 IrO2還原時間的影響.................................. 72 4.5.1.2 IrO2還原溫度的影響..................................74 4.5.1.3 IrO2還原溫度與還原時間的相互關係....................76 4.5.1.4 IrO2/Ti、d-IrO2/Ti 電極製備...................................78 4.5.1.4.1 SEM表面型態分析...................................... 78 4.5.1.4.2 X-ray分析......................................... 81 4.5.1.4.3 Raman光譜分析........................................... 82 4.5.1.4.4 XPS分析........................................ 83 4.5.1.4.5 IrO2/Au、IrO2/Ti/Au在還原後之氣體感測....87 4.5.1.5 IrO2還原前後丙酸感測再現性................................89 4.5.1.6 濃度極限..............................................91 4.5.1.7 以模擬計算探討丙酸分子在脫氧晶格內的吸附行為......93 4.5.2 IrO2對己胺之氣體感測................................95 4.5.2.1 IrO2還原時間的影響.............................95 4.5.2.2 IrO2還原溫度的影響................................97 4.5.2.3 IrO2/Au、IrO2/Ti/Au在還原後之氣體感測............99 第五章 結 論............................................... 101 第六章 參考文獻..................................................... 104

    1. 施正雄, 科學發展月刊, 27 (1999) 1184

    2. Y. H. Ju, C. J. Liu and J. C. Hsieh, J. Chin. Inst. Chem. Engrs., 29
    (1998) 415

    3. C. J. Liu, S.Y. Wang, J. C. Hsieh and Y. H. Ju, Sensors and Actuators, B65
    (2000) 371

    4. C. J. Liu , C. H. Peng, Y. H. Ju and J. C. Hsieh, Sensors & Actuators, B52
    (1998) 264

    5. C. J. Liu, W. C. Hou and Y. H. Ju, J. Chin. Inst. Chem. Engrs., 31 (2000)
    237

    6. C. J. Liu, J. C. Hsieh and Y. H. Ju, J. Vac. Sci. Technol. A14 (1996) 753

    7. Y. H. Ju, J. C. Hsieh and C. J. Liu, Thin Solid Films, 342 (1999) 238

    8. J. C. Hsieh , C. J. Liu and Y. H. Ju, Thin Solid Films, 322 (1997) 98

    9. G. G. Guilbault, and J. M. Jordan, CRC Critical Review in Analytical
    Chemistry, 19 (1988) 1

    10. J. W. Grate, S. J. Martin and R. M. White, Anal. Chem., 65 (1993)
    90A

    11. 蔡嬪嬪、曾明漢, 材料與社會, 68 (1992) 50

    12. G. Z. Sauerbrey, Phys., 155 (1959) 206

    13. J. Y. Jo, J. G. Yoon, J. K. Lee, J. M. Koo, J. Y. Won, S. P. Kim, and
    T. W. Noh, Integr. Ferroelectr., 67 (2004) 143

    14. M. F. Smiechowski, V. F. Lvovich, Sensors and Actuators B, 96 (2003) 261

    15. S. A. M. Marzouk, Anal. Chem., 75 (2003) 1258

    16. A. N. Bezbraruah and T. C. Zhang, Anal. Chem., 74 (2002) 5726

    17. H. Beyenal, C. C. Davis, Z. Lewandowski, Sensors and Actuators, 97 (2004)
    202

    18. T.W. Chao, C.J. Liu, A.H. Hsieh, H.M. Chang, Y.S. Huang, D.S. Tsai,
    Sensors and Actuators B (2006 in press)

    19. 謝志松, “氧化釕化學氣相沉積及場發射性質”,國立台灣科技大學化學工程系碩士
    論文 (2004)

    20. 梁雅閔, “化學氣相沉積氧化銥奈米桿氧化銥薄膜之製備與結構分析”國立台灣科技
    大學化學工程系碩士論文 (2003)

    21. A. Bolzan, C. Fong, B. J.Kennedy, C. J. Howard, Acta Cryst., B53 (1997) 373

    22. L. F. Mattheiss, Phys. Rev., B13 (1976) 2433

    23. Hackwood, S., L. M. Schiavone, W. C. Dautremont-Smith and G. Beui, J.
    Electrochem. Soc., 128 (1981) 2569

    24. L. F. Mattheiss, Phys. Rev. B13 (1976) 2433

    25. W. D. Ryden and A. W. Lawson, Phys. Rev. B1 (1984) 1813

    26. L. F. Mattheiss, Phys. Rev. B13 (1976) 2433

    27. Hackwood, S., L. M. Schiavone, W. C. Dautremont-Smith and G.
    Beui, J. Electrochem. Soc., 128 (1981) 2569

    28. Weudt , and H. M. Kuhne, Conference Record of Twentieth IEEE
    photovoltaic Specialists, 2 (1988) 1656

    29. Swette, I., N. Kackley and S. A. McCatty, J. of Power Source., 36
    (1991) 323

    30. Hamnett, P. S. Newcastle and R. D. Wingate, J. of Appl.
    Electrochemistry., 24 (1991) 982

    31. J. E. Oxley , Proceedings of the 34th Internationol Power Sources
    Symposium, (1990) 346

    32. M. Lambrechts and W. Sansen, Sensors and Actuators, 13 (1988) 287

    33. W. OlThuis, J. C. Van KerKhof and P. Bergveld, Sensors and
    Actuators, B4 (1991) 151

    34. J. A. Mihell, J. K. Atkinson, Sensors and Actuators, B48 (1998) 505

    35. M. Robert, Ianniello, M. A. A. Yacynych, Analytical Chimica Acta, 146
    (1983) 249

    36. F. Matthew, Smiechowski, F. V. Lvovich, Sensors and Actuators,
    B96 (2003) 261

    37. N. Dario, O. Alberto, and M. M. Claudio, Sensors and Actuators B,
    18-19 (1994) 566

    38. A. Karthigeyan, R. P. Gupta, K. Scharnagl, Sensors and Actuators,
    B85 (2002) 145

    39. I. Toro, W. David, Chipman, T. Taro, T. Katuso, Sensors and Actuators,
    B76 (2001) 265

    40. A. Salomonsson, S. Roy, C. Aulin, Sensors and Actuators, B107 (2005) 831

    41. R. S. Chen, Y. S. Huang, Y. M Liang, D. S. Tsai, Y. Chi and J. Kai,
    Journal of Materials chemistry, 13 (2003) 2525

    42. R. S. Chen,Y. S. Huang, D. S. Tsai, S. Chattopadhyay, C. T. Wu,
    Z. H. Lan and K. H. Chen, Chem. Mater., 16 (2004) 2457

    43. R. S. Chen and Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai,
    K. K. Tiong, Applied Physics Letters, 84 (2004) 1552

    44. T. R. Ling, C. M. Tsai, Sensors and Actuators B (2006 in press)

    45. T. W. Chao, C. J. Liu, A. H. Hsieh, H. M. Chang, Y.S. Huang,
    D.S. Tsai, Sensors and Actuators B (2006 in press)

    46. P. J. Curie, C. R. Acad. Sci., 91 (1880) 294

    47. M. D. Ward, D. A. Buttry, Science, 249 (1990) 1000

    48. J. W. Grate , S. J. Martin and R. M. White, Anal. Chem., 65 (1993)
    940A

    49. T. R. Ling, C. M. Tsai, Sensors and Actuators B (2006 in press)

    50. C. Lu, A. W. Czanderna, Elsevier Science, New York, (1984)

    51. R. S. Niranjan, I. S. Mulla, Material and Engineering B103 (2003)
    103

    52. Z. P. Liu, J. J. Stephen, and A. K. David, Physical Review Letters,
    93 (2004) 15

    53. S. Shukla, L. Ludwig C. Parrish, S. Seal, Sensors and Actuators B
    104 (2005) 223

    54. T. R. Ling, C. M. Tsai, Sensors and Actuators B (2006 in press)

    55. A. Tiburico-Silver, Solar Energy Materials and Solar Cells 91 (2007)
    207

    56. A. P. Roth, J. B. Webb, D. F. Williams, Phys. Rev. B 25 (1982) 7836

    57. B. Joseph, Bull. Mater. Sci. 22 (1999) 921

    58. S. G. Wang , X. D. Wen , D. B. Cao , Y. W. Li ,J. Wang , H. Jiao,
    Surface Science 577 (2005) 69

    59. A. Tiburcio-Silver, J. C. Joubert, M. Labeau, Thin Solid Films 197
    (1991) 195

    60. R. L. Kurtz, R. Stockbaur, T. E. Madey, Surface Science 218 (1989)
    178

    61. P. Ciureanu, Thin Film Resistive Sensors (1992) 451

    65. Y. S. Huang, S. S. Lin, C.R. Huang, M. C. Lee, T. E. Dann,
    F. Z. Chien, Solid State Communications, 70 (1989) 517

    63. G. H. Azarbayejani, Appl. Phys. Lett. 47 (1985) 12.

    64. Z. Jiao, M. Wu, Z. Qin, M. Lu and J. Gu, Sensors, 3 (2003) 285

    66. 胡興中,觸媒原理與應用,高立圖書有限公司 (1996).

    67. J. E. Lennard-Jones, Trans. Faraday Soc., 28 (1932) 333.

    68. S. J. Gentry and T. A. Jones, Sensors and Actuators, 10 (1986) 141.

    69. 林鴻明、曾世杰,工業材料,157 (2000) 163

    70. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sensors and Actuators
    B (1991) 147

    71. R. S. Niranjan, I. S. Mulla*, Material and Engineering B103 (2003)
    103

    72. Y. S. Huang, S. S. Lin, C.R. Huang, M. C. Lee, T. E. Dann,
    F. Z. Chien, Solid State Communications, 70 (1989) 517

    72. M. Pourbaix, Pergamon Press, Oxford, England (1996)

    73. C. Mousty, G. Foti, Ch. Comninellis, V. Reid, Electrochimica Acta
    45 (1999) 451

    74. R. S. Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay,
    K. H. Chen, J. Cryst. Growth, 271 (2004) 105

    75. Y. H. Song, Y. L. Chen, Y. Chi, S. S. Liu, W. L. Ching, J. J. Kai,
    R. S. Chen, Y. S. Huang, and J. C. Arthur, Chem. Vap. Deposition. 9
    (2003) 162

    76. 單啟齊,“催化有機小分子氧化反應之鉑-銥-氧化銥薄壁電化學
    觸媒”,國立台灣科技大學化學工程系碩士論文 (2006)

    77. J. Augustynski, M. Koudelka and J. Sanchez, J. Electroanal. Chem.,
    160 (1984) 233

    78. R. S Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay,
    K. H. Chen, J. Cryst. Growth., 271 (2004) 105

    79. 謝安和,“二氧化銥之氣體感測性質以及濺鍍金屬之影響,
    國立台灣科技大學化學工程系碩士論文 (2006)

    80. T. W. Chao, C. J. Liu, A. H. Hsieh, H. M. Chang, Y. S. Huang,
    D. S. Tsai, Sensors and Actuators B (2006 in press)

    81. A. J. Terezo and E. C. Pereira, Electrochim. Acta. 44 (1999) 4507.

    82. M. Boudart, Adv. Catal, 19 (1969) 153

    83. R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi and J. J. Kai,
    J. Mater. Chem., 13 (2003) 2525

    84. Y. Y. Hou, J. M. Hu, L. Liu, J. Q. Zhang, and C. N. Cao, Electrochimica
    Acta., 51 (2006) 6258

    85. L. Quattara, T. Diaco, I. Duo, M. Panizza, G. Foti and Ch. Cominellis,
    J. Electrochem. Soc. 150 (2003) D41

    86. G.. Foti, C. Mousty, V. Reid, Ch. Comninellis, Electrochim Acta.
    44 (1998) 813

    87. F. Beck, H.J. Schulz, J. Electroanal. Chem. 229 (1987) 339.

    88. E. Lodowicks, F. Beck, Chem. Eng. Technol. 17 (1984) 338.

    89. D. T. Shieh, B. J. Hwang, J. Electro. Chem. Soc. 142 (1995) 816

    90. A. R. de Andrade, P. M. Donate, P. P. D. Alves, C. H. V. Fedellis,
    J. F. C. Boodts, J. Electrochem. Soc. 145 (1998) 3839

    91. J. W. Kim, S. M. Park, J. Electrochem. Soc. 146 (1999) 1075

    92. G. Foti, D.Gandini, Ch. Comninellis, Curr. Top. Electrochem.
    5 (1997) 71

    93. R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, K. K. Tiong,
    Journal of Alloys and Compounds 383 (2004) 273

    94. W. G. Julian, S.W. Hyun and L. H. Evor, Sensors and
    Actuators B, 70 (2000) 19

    95. S. lijima, “Helica microtubules of graphic carbon”, Nature 354
    (1991) 56

    QR CODE