簡易檢索 / 詳目顯示

研究生: 胡明裕
Ming-yu Hu
論文名稱: 正十二胺、全氟正壬醇界面活性劑之吸附動力學探討
Adsorption Kinetic of 1-Dodecylamine and Heptadecafluoro-1-Nonanol
指導教授: 林析右
Shi-Yow Lin
口試委員: 陳立仁
Li-Jen Chen
蔡瑞瑩
Ruey-Yug Tsay
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 正十二胺吸附動態表面張力全氟正壬醇
外文關鍵詞: dodecylamine, adsorption, surface tension, heptadecafluoro-1-nonanol
相關次數: 點閱:208下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討正十二胺陽離子型界面活性劑(DDA)在氣-液界面及固-液界面之吸附行為。利用懸掛氣泡張力測量儀及威氏平板法張力計量測DDA界劑水溶液之動態暨平衡表面張力,並藉由動態張力曲線探討DDA界劑分子的吸附行為。
    動態表面張力數據顯示,DDA界劑水溶液在溫度為25oC及濃度大於7.11×10-8 mol/cm3 時,在張力為43.7 mN/m 有一plateau區域,推測是DDA界劑分子吸附至氣-液界面後發生的相變化。本實驗發現動態張力曲線先降至一暫時平衡區域(最低點),而後回升至一定值(72mN/m)不再變化。我們猜測DDA界劑分子在溶液本體相的濃度會越來越低,可能是吸附至固-液界面上。由於DDA水溶液中的界劑均為離子態,石英盒表面的負電荷會與DDA界劑中的陽離子產生靜電作用力,造成DDA界劑分子吸附至固-液界面上。藉由更換不同的容器(Pyrex盒)或是在水溶液中加入鋼珠、玻璃珠與石英珠增加固-液界面表面積,並利用威氏平板法張力計量測表面張力的變化,進一步計算DDA界劑分子在鋼珠、玻璃珠與石英珠表面的吸附量,證明DDA界劑分子確實有往固-液界面吸附的傾向。
    本文第二部份探討全氟正壬醇(C8F17CH2OH)之吸附動力學。利用懸掛氣泡影像數位化測量儀量測全氟正壬醇水溶液的動態暨平衡表面張力,並利用Langmuir, Frumkin與generalized Frumkin模式來模擬平衡表面張力、全氟正壬醇濃度與動態表面張力間之關係。
    動態表面張力數據顯示,全氟正壬醇水溶液在溫度為25oC及濃度大於8.2×10-9 mol/cm3 時,在張力為64.8 mN/m 有一plateau區域,推測是全氟正壬醇界劑分子吸附至氣-液界面後發生的相變化,本研究利用三種模式來模擬平衡表面張力與全氟正壬醇濃度之關係曲線,其中generalized Frumkin模式最能描述平衡張力曲線。在假設全氟正壬醇界劑分子吸附至氣-液界面之質傳機制為混合控制時,利用generalized Frumkin模式模擬所得之理論動態張力曲線與實驗之動態張力數據相當吻合,以上之結果顯示:(1) generalized Frumkin吸附等溫線為描述平衡張力曲線較恰當之選擇,(2)當質傳機制為混合控制時,generalized Frumkin模式可很好地描述全氟正壬醇之動態張力實驗數據。


    This study investigates the adsorption kinetics of cationic surfactant 1-dodecylamine (DDA) and heptadecafluoro-1-nonanol. We measured the dynamic and equilibrium surface tension by using the pendant bubble tensiometer and surface tensiometer (CVBP-A3), then discussed the relaxations of surface tension at different surfactant concentrations.
    There exists a plateau at surface tension γ = 43.7 mN/m in the dynamic surface profiles of aqueous DDA solutions at 25oC. This plateau phenomenon implies the existence of a phase transition for the DDA molecules adsorbed at air-water interface. Another novel phenomenon was also observed, that γ(t) decreases from 72 mN/m (the surface tension of solvent) since the generation of the air-water interface, reaches a minimum γ, then γ(t) increases with time. At the end of the adsorption process, γ(t) always comes back to 72 mN/m. This γ(t) data implies that the DDA molecules prefer to adsorb on quartz surface instead of the air-water interface. To clarify this point, we added a lot of quartz, glass or stainless steel beads into aqueous DDA solutions and measured their equilibrium surface tensions. The surface concentrations for DDA adsorbed on quartz, glass and stainless steel surface were then evaluated from the change of equilibrium surface tension based on the mass balance calculation.
    At the end of this study, the adsorption kinetics of heptadecafluoro-1-nonanol (C9H2F17OH) onto a clean air-water interface was studied; relaxation profiles of surface tension for heptadecafluoro-1-nonanol molecules absorbing onto a freshly created air-water interface were obtained. The adsorption of fluoroalcohol C9H2F17OH was found to be cooperative from the equilibrium surface tension data at γ(C) > 65 mN/m compared with the prediction of the generalized Frumkin model. The controlling mechanism of the adsorption process was found to be mixed diffusive-kinetic controlled.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1界面活性劑的特性 1 1.2界面活性劑分類 1 1.3研究主題 2 第二章 文獻回顧 2 2.1界劑分子在氣-液界面之吸附行為 2 2.1.1 單分子層 (monolayers) 4 2.1.2 單分子層的物理狀態 4 2.2質傳理論 6 2.2.1 Langmuir adsorption model 7 2.2.2 Frumkin and generalized Frumkin models 9 2.2.3 Phase transition models 11 2.3 界劑水溶液之表面張力量測 20 2.4 界劑分子在固-液界面之吸附行為 20 2.4.1 物理吸附與化學吸附 20 2.4.2 吸附模式與吸附等溫線 20 2.4.3 界劑吸附機制考量 22 2.4.4 界劑分子吸附至固-液界面之吸附機制 23 第三章 研究方法 26 3.1 懸掛氣泡影像數位化測量儀 26 3.1.1懸掛氣泡法量測界面張力之理論 26 3.1.2硬體設備 28 3.2表面張力計測量原理 31 3.3其它實驗儀器 31 3.4實驗藥品 32 3.5實驗方法 33 3.5.1溶液配製 33 3.5.2實驗流程 33 3.6模擬模式之參數決定方法 35 3.7吸附之動態表面張力分析 36 第四章 DDA吸附行為探討 36 4.1以懸掛氣泡法量測DDA水溶液的表面張力 37 4.2 以表面張力計量測DDA水溶液的表面張力 44 4.3 計算DDA界劑分子在固-液界面之吸附量 48 4.4 計算DDA界劑分子在玻璃珠、鋼珠及石英珠之吸附量 53 第五章 全氟正壬醇在氣-液界面之吸附動力學 65 5.1 吸附行為之實驗結果 65 5.2 決定模式與參數 67 5.3 低濃度區域之模擬結果 70 5.4 正醇類之質傳行為比較 73 第六章 結論與建議 75 6.1 結論 75 6.2 建議 75 參考文獻 76

    參考文獻
    1. 張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999)
    2. Myers, D. “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, 1999.
    3. 刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990).
    4. 李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)
    5. Palla, B. J.; Shah, D. O. “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries”, Journal of Dispersion Science and Technology 2000, 21, 491.
    6. Pan, T. M.; Lei, T. F.; Chen, C. C.; “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells”, IEEE Electron Device Letters 2000, 21, 338.
    7. Lin, S. Y. Ph. D. Dissertation, City University of New York, New York, 1991.
    8. Hiemenz, P. C. “Principles of Colloid Surface Chemistry”, 1986.
    9. Phillies, G. D. J. “Reactive contribution to the apparent translational diffusion coefficient of a micelle”, J. Phys. Chem. 1981, 85, 3540.
    10. Stebe, K.; Lin, S. Y. “Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis,” in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego, 2001; Chapter 2.
    11. Baret, J. F. “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface”, J. Colloid Interface Sci. 1969, 30, 1.
    12. Aveyard, R.; Haydon, D. A. An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge, 1973; Chapters 1 and 3.
    13. Fainerman, V. B.; Lylyk, S. V. “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer”, Kolloidn. Zh., 1982, 44, 538.
    14. Frumkin, A. Z. “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides”, Phys. Chem. (Leipzig) 1925, 116, 466.
    15. Lin, S. Y.; Lu, T. L.; Hwang, W. B. “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces”, Langmuir 1995, 11, 555.
    16. Lin, S. Y.; Wang, W. J.; Hsu, C. T. “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer”, Langmuir 1997, 13, 6211.
    17. Lee, Y. C.; Liou, Y. B.; Miller, R.; Liu, H. S.; Lin, S. Y. “Surface equation of state of nonionic cmen surfactants”, Langmuir 2002, 18, 2686.
    18. Johnson, D. O.; Stebe, K. J. “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules”, J. Colloid Interface Sci. 1996, 182, 526.
    19. Baret, J. F. “Fast adsorption at the liquid-gas interface”, J. Phys. Chem. 1968, 72, 2755.
    20. Borwankar, R. P.; Wasan, D. T. “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants”, Chem. Eng. Sci. 1988, 43, 1323.
    21. England, D. C.; Berg, J. C. “Surface fractionation of multicomponent oil mixtures”, AIChE 1971, 17, 313.
    22. Fainerman, V. B. “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface”, Colloid J. USSR 1977, 39, 91
    23. Miller, R.; Lunkenheimer, K. “Adsorption kinetics measurements of some nonionic surfactants”, Colloid Polymer Sci. 1986, 264, 357.
    24. Joos, P.; Serrien, G. “Dynamic surface and interfacial tensions of surfactant and polymer solutions”, J. Colloid Interface. Sci. 1989, 127, 97.
    25. Chang, C. H.; Franses, E. I. “Techniques to measure dynamic surface tension”, Chem. Eng. Sci. 1994, 49, 313.
    26. Lin, S. Y.; Mckeigne, K.; Maldarelli, C. “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant”, Langmuir, 1991, 7, 1055.
    27. Lin, S. Y.; Mckeigne, K.; Malderelli, C. “Diffusion-controlled surfactant adsorption studied by pendant drop digitization”, AIChE J. 1990, 36, 1785.
    28. Maclleod, C. A.; Radke, C. J. “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry”, J. Colloid Interface Sci. 1994, 166, 73.
    29. Wang, X.M. Liu, J. Du, H. Miller, J. D. “States of adsorbed dodecyl amine and water at a silica surface as revealed”, Langmuir 2010, 26, 3407.
    30. Rosen J. M. “Surfactants and Interfacial Phenomena”1978, Chapter 1-2.
    31. Fainerman, V. B. Lylyk, S. V. “Dynamic Surface Tension in Concentrated Solutions of CnEm Surfactants: A Comparison between the Theory and Experiment”, Kolloid. Z 1982, 44, 598.
    32. Lin, S. Y.; Mckeigne, K.; Maldarelli, C. “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant”, Langmuir 1991, 7, 1055.
    33. de Laplace, P. S. Mechanique Celeste, Supplement to book, 1806, 10.
    34. 蘇啟明,〝正十二胺、正壬醇界面活性劑之吸附動力學探討〞,國立臺灣科技大學化學工程學碩士論文(2010)
    35. 吳翠芬,〝正十二碳醇之相變化暨吸附動力學行為研究〞,國立臺灣科技大學化學工程學碩士論文(2003)
    36. Somasundaran; P. Snell, E. D. Qun.Xu. “Adsorption behavior of alkylarylethoxylated alcohols on silica”, J. Colloid Interface Sci.1991,144, 165.
    37. Lee, Y. L., “Surface Characterization of octadecylamine films prepared by Langmuir-Blodgett and vacuum deposition methods by dynamic contact angle measurements” , Langmuir 199915, 1796,.
    38. Tsay, R. Y. Yan, S. C. Lin, S. Y. “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics”, Rev. Sci. Instrum. 1995, 66, 5065.
    39. Somasundaran, P. Moudgil, B. M. “Reagents in Mineral Technology” Surfactant Science Series; 1988, 27.
    40. Gu, Y. G. Li, D. Q. “Microfluidic analogy of the wheatstone bridge for systematic investigations of electro-osmotic flows”, J.Colloid Interface Sci.2000, 226, 328.
    41. Bleys, G.; Joos, P. “Dynamic surface properties of aqueous sodium dioctyl sulfosuccinate solutions”, J. Phys. Chem. 1985, 89, 1027.
    42. Huh, C. Reed, R. L. “Adsorption kinetics of decanol at the air-water interface”, J.Colloid Interface Sci. 1983, 91, 472.
    43. Rotenberg, Y.; Boruvka, L.; Neumann, A. W. “Adsorption kinetics of decanol at the air-water interface” J. Colloid Interface Sci. 1983, 93, 169.
    44. 林隆偉,〝C12E8、大利松和1,10癸二醇等吸附動力學研究〞,國立臺灣科技大學化學工程學碩士論文(1996)

    QR CODE