簡易檢索 / 詳目顯示

研究生: 梁烝輔
Zheng-Fu Liang
論文名稱: TiO2基中空複合材料光催化性能調控之研究
Study on the Modulation of Photocatalytic Performance in TiO2-Based Hollow Composite Materials
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳啟亮
陳良益
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: TiO2複合材料光催化
外文關鍵詞: TiO₂-based composites, photocatalytic
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目 錄 中文 摘要................................................................................................ I ABSTRACT.......................................................................III 誌 謝......................................................................................V 目 錄.......................................................................................VI 圖目錄..................................................................................VIII 表目錄...................................................................................XI 第一章 緒論.....................................................................1 1.1 研究背景....................................................................................1 1.2 研究動機...............................................................................2 第二章 文獻回顧與理論介紹.....................................................4 2.1 光觸媒 .......................................................................................4 2.1.1 光觸媒原理與簡介............................................................4 2.1.2 光觸媒反應機制 ..................................................................5 2.2 材料性質與研究背景................................................................7 2.2.1 改善 TIO2 帶隙以提升光觸媒應用範圍...................................7 2.2.2 二氧化鈦結構與性質............................................................17 2.2.3 二氧化鈰結構與性質...................................................................20 第三章 實驗方法與分析儀器.....................................................23 3.1 材料製備方式..................................................................................23 3.1.1 二氧化矽球製備 .............................................................23 3.1.2 二氧化鈦中空球製備......................................................24 3.1.3 二氧化鈰沉積於二氧化鈦中空球......................................25 3.2 性質分析...........................................................................27 3.2.1 X 光繞射分析 ..............................................................27 3.2.2 穿透式電子顯微鏡.....................................29 3.2.3 X 光吸收光譜 .........................................................................31 3.2.4 X 射線光電子能譜儀 ........................................................36 3.2.5 拉曼光譜分析......................................................................37 3.2.6 紫外光/可見光吸收光譜.....................................................38 3.2.7 光觸媒性能..........................................................................39 第四章 結果與討論................................................................40 4.1 以二氧化矽為模板合成二氧化鈦中空球結構之結果.................40 4.1.1 XRD 分析.....................................................................41 4.1.2 TEM 分析.........................................................................42 4.1.3 RAMAN 分析..................................................................44 4.1.4 XAS 分析........................................................................................46 4.1.5 UV - VIS 分析.............................................................................49 4.1.6 光催化降解分析 ........................................................................51 4.1.6 綜合比較與討論 ............................................................................53 4.2 二氧化鈰顆粒沉積於二氧化鈦中空球之結果................................58 4.2.1 XRD 分析.................................................................................58 4.2.2 TEM 分析...............................................................................60 4.2.3 RAMAN 分析..................................................................................64 4.2.4 XPS 分析.................................................................................66 4.2.5 UV-VIS 分析 ..............................................................................70 4.2.6 光催化降解分析 .......................................................................72 4.2.7 綜合討論....................................................................................74 第五章 結論........................................................................................75 參考文獻................................................................................76

參考文獻
[1] Zhenzi Li, Shijie Wang, Jiaxing Wu, Wei Zhou. "Recent progress in defective TiO2 photocatalysts for energy and environmental applications." Renewable and Sustainable Energy Reviews 156 (2022): 111980.
[2] Peng Lian, Aimiao, Qin1Lei Liao, Kaiyou Zhang. "Progress on the nanoscale spherical TiO2 photocatalysts: Mechanisms, synthesis and degradation applications." Nano Select 2.3 (2021): 447-467.
[3] Alireza Haghighat Mamaghani, Fariborz Haghighat, Chang-Seo Lee "Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification." Applied Catalysis B: Environmental 269 (2020): 118735.
[4] Guoliang Li, Chunyang Liao, Guibin Jiang. "Hollow TiO2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage, carbonate-doping and the induced Ti3+." Journal of Environmental Sciences 72 (2018): 153-165.
[5] Nisha T. Padmanabhan, Nishanth Thomas, Jesna Louis, Dhanu Treasa Mathew, Priyanka Ganguly, Honey John, Suresh C. Pillai. (2021). Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 271, 129506.
[6] Shamsa Munir, Syed Mujtaba Shah, Hazrat Hussain, Rafaqat Ali khan
"Effect of carrier concentration on the optical band gap of TiO2 nanoparticles." Materials & Design 92 (2016): 64-72.
[7] Amanda Rodríguez-Alvarez, Susana Silva-Martínez, Carlos A. PinedaArellano "Influence of copper and iron transition metals in the
photocatalytic activity of titanium dioxide microspheres." Journal of Photochemistry and Photobiology A: Chemistry (2023): 115016.
[8] Swati Sood, Ahmad Umar, Surinder Kumar Mehta, Sushil Kumar Kansal. "Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. " Journal of colloid and interface science, 2015, 450: 213-223.
[9] Shanying Li, Yilong Yang, Qing Su, Xiangyun Liu, Haipeng Zhao,
Zhenxin Zhao, Jie Li, Chi Jin "Synthesis and photocatalytic activity of
transition metal and rare earth element co-doped TiO2 nano particles."
Materials Letters 252 (2019): 123-125.
[10] Feiyan Lu, Kao Chen, Qingge Feng, Huidong Cai, Dachao Ma,
Dongbo Wang, Xiang Li, Chen Zuo, Sinan Wang "Insight into the
enhanced magnetic separation and photocatalytic activity of Sn-doped
TiO2 core-shell photocatalyst." Journal of Environmental Chemical
Engineering 9.5 (2021): 105840.
[11] Chiara Alberoni, Isabel Barroso-Martı´n, Antonia Infantes-Molina,
Enrique Rodrı´guez-Castellon, Aldo Talon, Haiguang Zhao, Shujie You,
Alberto Vomiero and Elisa Moretti "Ceria doping boosts methylene blue
photodegradation in titania nanostructures." Materials Chemistry Frontiers
5.11 (2021): 4138-4152.
[12]Shayegan, Zahra, Fariborz Haghighat, and Chang-Seo Lee. "Surface
fluorinated Ce-doped TiO2 nanostructure photocatalyst: A trap and remove
strategy to enhance the VOC removal from indoor air environment."
Chemical Engineering Journal 401 (2020): 125932.
[13]Samsudin, Emy Marlina, and Sharifah Bee Abd Hamid. "Effect of
band gap engineering in anionic-doped TiO2 photocatalyst." Applied
Surface Science 391 (2017): 326-336.
[14]Shayegan, Zahra, Fariborz Haghighat, and Chang-Seo Lee. "Surface
fluorinated Ce-doped TiO2 nanostructure photocatalyst: A trap and remove
strategy to enhance the VOC removal from indoor air environment."
Chemical Engineering Journal 401 (2020): 125932.
[15]Shayegan, Zahra, Chang-Seo Lee, and Fariborz Haghighat. "TiO2
photocatalyst for removal of volatile organic compounds in gas phase–A
review." Chemical Engineering Journal 334 (2018): 2408-2439.
[16] Mei-Hong Tong, Yan-Xin Chen, Shi-Wei Lin, Hai-Peng Zhao, Rui
Chen, Xia Jiang, Hao-Yan Shi, Mei-Ling Zhu, Qian-Qian Zhou, CanZhong Lu. "Synchronous electrochemical anodization: a novel strategy for
preparing cerium doped TiO2 nanotube arrays toward visible-light PEC
water splitting." Electrochimica Acta (2023): 142793.
[17] Wei-Hsiang Huang, Wei-Nien Su, Chi-Liang Chen, Chin-Jung Lin,
Shu-Chih Haw, Jyh-Fu Lee, Bing Joe Hwang. "Structural evolution and Au
nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2
microspheres: An X-ray absorption spectroscopy study." Applied Surface
Science 562 (2021): 150127.
[18] Elham Montakhab, Fereshteh Rashchi, Saeed Sheibani. "Enhanced
photocatalytic activity of TiO2 nanotubes decorated with Ag nanoparticles
by simultaneous electrochemical deposition and reduction processes."
Applied Surface Science 615 (2023): 156332.
[19] Shunxing Li, Jiabai Cai, Xueqing Wu, Biwen Liu, Qiaoying Chen,
Yuehai Li, Fengying Zheng. "TiO2@ Pt@ CeO2 nanocomposite as a
bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photooxidation of benzyl alcohol." Journal of hazardous materials 346 (2018): 52-61.
[20] Jiabai Cai, Xueqing Wu, Shunxing Li , Fengying Zheng. "Controllable
location of Au nanoparticles as cocatalyst onto TiO2@ CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity."Applied Catalysis B: Environmental 201 (2017): 12-21.
[21]Karthickraja Ramakrishnan, V. Gayathri, K. Aravinthkumar, K. Ramachandran, B. Ajitha, M. Rameshbabu, S. Sasiflorence, S.Karazhanov,
K. Praba, C. Raja Mohan. "TiO2/CeO2 Core/Shell nanostructures for photocatalytic and photo electrochemical applications." Inorganic Chemistry Communications 144 (2022): 109842.
[22]Masoud Emami Mehr, Hossein Maleki-Ghaleh, Mohadeseh Yarahmadi, Majid Kavanlouei, M. Hossein Siadati. "Synthesis and characterization of photocatalytic zinc oxide/titanium oxide (core/shell) nanocomposites." Journal of Alloys and Compounds 882 (2021): 160777.
[23]Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin,
Paveena Laokul "Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres." Journal of Materials Science & Technology 48 (2020): 105-113.
[24] Manoj Pudukudy, Qingming Jia, Jingyou Yuan, Sivagnanam Megala,
Ramesh Rajendran, Shaoyun Shan. "Influence of CeO2 loading on the
structural, textural, optical and photocatalytic properties of single-pot solgel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation." Materials Science in Semiconductor Processing 108 (2020): 104891.
[25]Gabriela Bonfanti Vieira, Humberto Jorge José, Michael
Peterson,Vanessa Zanon Baldissarelli, Pedro Alvarez, Regina de Fátima
Peralta Muniz Moreira. "CeO2/TiO2 nanostructures enhance adsorption
and photocatalytic degradation of organic compounds in aqueous
suspension." Journal of Photochemistry and Photobiology A: Chemistry
353 (2018): 325-336.
[26] Xueqin Wang, Helong Xu, Xiaohang Luo, Ming Li, Man Dai, Qihui
Chen, Hua Song. "Enhanced photocatalytic properties of CeO2/TiO2
heterostructures for phenol degradation." Colloid and Interface Science
Communications 44 (2021): 100476.
[27] Uriel Caudillo-Flores, Irene Barba-Nieto, Mario J. Munoz-Batista,
Debora Motta Meira, Marcos Fernandez-García, Anna Kubacka. "Thermophoto production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A
spectroscopic and mechanistic study." Chemical Engineering Journal 425
(2021): 130641.
[28] Vijaya Kumari, Anuradha Sharma, Naveen Kumar, Mika Sillanpaa,
Peter R. Makgwane, Md. Ahmaruzzaman, Ahmad Hosseini-Bandegharaei,
Manju Rani, P. Chinnamuthu. "TiO2-CeO2 assisted heterostructures for
photocatalytic mitigation of environmental pollutants: A comprehensive
study on band gap engineering and mechanistic aspects." Inorganic
Chemistry Communications (2023): 110564.
[29] Xueqin Wang, Helong Xu, Xiaohang Luo, Ming Li, Man Dai, Qihui
Chen, Hua Song. "Enhanced photocatalytic properties of CeO2/TiO2
heterostructures for phenol degradation." Colloid and Interface Science
Communications 44 (2021): 100476.
[30]Cano-Franco, Julieth Carolina, and Mónica Álvarez-Láinez. "Effect of
CeO2 content in morphology and optoelectronic properties of TiO2-CeO2
nanoparticles in visible light organic degradation." Materials Science in
Semiconductor Processing 90 (2019): 190-197.
[31] Zhenghua Fan, Fanming Meng, Jinfeng Gong, Huijie Li, Youdi Hu,
Daorui Liu. "Enhanced photocatalytic activity of hierarchical flower-like
CeO2/TiO2 heterostructures." Materials Letters 175 (2016): 36-39.
[32] Fujung Chen, Pingluen Ho, Rui Ran, Wenming Chen, Zhichun Si,
Xiaodong Wu, Duan Weng, Zhenghong Huang, Chiyoung Lee.
"Synergistic effect of CeO2 modified TiO2 photocatalyst on the
enhancement of visible light photocatalytic performance." Journal of
Alloys and Compounds 714 (2017): 560-566.
[33]Huili Ran, Jiajie Fan, Xiaoli Zhang, Jing Mao, Guosheng
Shao ."Enhanced performances of dye-sensitized solar cells based on AuTiO2 and Ag-TiO2 plasmonic hybrid nanocomposites." Applied Surface
Science 430 (2018): 415-423
[34] Weilin Zhong, Chao Wang, Suqing Peng, Riyang Shu, Zhipeng Tian,
Yanping Du, Ying Chen. "Investigation on the effect of temperature on
photothermal glycerol reforming hydrogen production over Ag/TiO2
nanoflake catalyst." International Journal of Hydrogen Energy 47.37
(2022): 16507-16517.
[35] Yen-Shin Chen, Bo-Kai Chao, Tadaaki Nagao, Chun-Hway Hsueh.
"Effects of Ag particle geometry on photocatalytic performance of
Ag/TiO2/reduced graphene oxide ternary systems." Materials Chemistry
and Physics 240 (2020): 122216.
[36]Grätzel, Michael. "Photoelectrochemical cells." nature 414.6861
(2001): 338-344.
[37]Ameta, R., Benjamin, S., Ameta, A., & Ameta, S. C. (2013, January).
Photocatalytic degradation of organic pollutants: a review. In Materials
Science Forum (Vol. 734, pp. 247-272). Trans Tech Publications Ltd.
2.1.2
[38] M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan. (2019).
Photocatalytic activity improvement and application of UV-TiO2
photocatalysis in textile wastewater treatment: A review. Journal of
Environmental Chemical Engineering, 7(5), 103248. 2.1.2
[39] Seul-Yi Lee, Soo-Jin Park. "TiO2 photocatalyst for water treatment
applications." Journal of industrial and engineering chemistry 19.6 (2013):
1761-1769.
[40] Yi-Che Chen, Yu-Cheng Chang, Alexandre Gloter, Pei-Kai Hsu, JennMing Song, ShihYun Chen. "Synergetic effect of interface and surface on photocatalytic performance of TiO2@ hollow CeO2 core–shell nanostructures." Applied Surface Science 566 (2021): 150602.
[41] Chun Cheng, Abbas Amini, Chao Zhu, Zuli Xu, Haisheng Song, Ning
Wang. "Enhanced photocatalytic performance of TiO2-ZnO hybrid
nanostructures." Scientific reports 4.1 (2014): 1-5.
[42] Julieth Carolina Cano-Franco, Mónica Álvarez-Láinez. "Effect of
CeO2 content in morphology and optoelectronic properties of TiO2-CeO2
nanoparticles in visible light organic degradation." Materials Science in
Semiconductor Processing 90 (2019): 190-197.
[43] Na Zhou, Lakshminarayana Polavarapu, Nengyue Gao, Yanlin Pan,
Peiyan Yuan, Qing Wang, Qing-Hua Xu. (2013). TiO2 coated Au/Ag
nanorods with enhanced photocatalytic activity under visible light
irradiation. Nanoscale, 5(10), 4236-4241.
[44] Atsuhiro Tanaka, Satoshi Sakaguchi, Keiji Hashimoto, and Hiroshi
Kominami.(2013) Preparation of Au/TiO2 with metal cocatalysts
exhibiting strong surface plasmon resonance effective for photoinduced
hydrogen formation under irradiation of visible light. Acs Catalysis, 3(1),
79-85.
[45] Wei-Hsiang Huang, Wei-Nien Su, Chi-Liang Chen, Chin-Jung Lin,
Shu-Chih Haw, Jyh-Fu Lee, Bing Joe Hwang. "Structural evolution and Au
nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2
microspheres: An X-ray absorption spectroscopy study." Applied Surface
Science 562 (2021): 150127.
[46] Jesús Vargas Hernandez, Sandrine Coste, Antonieta García Murillo,
Felipe Carrillo Romo, Abdelhadi Kassiba (2017). Effects of metal doping
(Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2.
Journal of Alloys and Compounds, 710, 355-363.
[47] K. Wilke, H.D. Breuer. "The influence of transition metal doping on
the physical and photocatalytic properties of titania." Journal of
Photochemistry and Photobiology A: Chemistry 121.1 (1999): 49-53.
[48] Aleksandra Piątkowska,Magdalena Janus, Kacper Szymański, Sylwia
Mozia. "C-, N-and S-doped TiO2 photocatalysts: a review." Catalysts 11.1
(2021): 144.
[49]Zaleska, Adriana. "Doped-TiO2: a review." Recent patents on
engineering 2.3 (2008): 157-164.
[50] Emy Marlina Samsudin, Sharifah Bee Abd Hamid, Joon Ching Juan,
Wan Jefrey Basirun, Ahmad Esmaielzadeh Kandjani and Suresh K.
Bhargava. "Controlled nitrogen insertion in titanium dioxide for optimal
photocatalytic degradation of atrazine." RSC Advances 5.55 (2015):
44041-44052.
[51] Emy Marlina Samsudin, Sharifah Bee Abd Hamid, Joon Ching Juan,
Wan Jefrey Basirun, Gabriele Centi. "Enhancement of the intrinsic
photocatalytic activity of TiO2 in the degradation of 1, 3, 5-triazine
herbicides by doping with N, F." Chemical Engineering Journal 280 (2015):
330-343.
[52]Hanaor Dorian AH, and Charles C. Sorrell. "Review of the anatase to
rutile phase transformation." Journal of Materials science 46 (2011): 855-
874.
[53] Chi Him A. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie
Zhan, Ruijie Xie, Dennis Y.C. Leung, Haibao Huang. "Titanium oxide
based photocatalytic materials development and their role of in the air
pollutants degradation: Overview and forecast." Environment International
125 (2019): 200-228.
[54]Junjun Jia, Haruka Yamamoto, Toshihiro Okajima and Yuzo Shigesato
"On the crystal structural control of sputtered TiO2 thin films." Nanoscale
research letters 11 (2016): 1-9.
[55] M. K. Nowotny, L. R. Sheppard, T. Bak, and J. N. "Defect chemistry
of titanium dioxide. Application of defect engineering in processing of
TiO2-based photocatalysts." The Journal of Physical Chemistry C 112.14
(2008): 5275-5300.
[56] Mohamed Ahmed, David Rodley, Thomas Jones, Amin Abdolvand,
Alison Lightfoot, Herbert Fruchtl and Richard Baker. "Computational
Modelling of Ceria-Based Solid Oxide Fuel Cell Electrolyte Materials."
ECS Transactions 103.1 (2021): 931.
[57]Britannica, The Editors of Encyclopaedia. "Bragg law". Encyclopedia
Britannica, 15 Mar. 2022,
[58] Ran Ma, Sai Zhang, Tao Wen, Pengcheng Gu, Lei Li, Guixia Zhao,
Fenlei Niu, Qifei Huang, Zhenwu Tang, Xiangke Wang. "A critical review
on visible-light-response CeO2-based photocatalysts with enhanced
photooxidation of organic pollutants." Catalysis today 335 (2019): 20-30.
[59] Hao Cheng, Jingyu Wang, Yizhi Zhao and Xijiang Han "Effect of
phase composition, morphology, and specific surface area on the
photocatalytic activity of TiO2 nanomaterials." Rsc Advances 4.87
(2014): 47031-47038.
[60] Jian Tian, Yuanhua Sang, Zhenhuan Zhao,Weijia Zhou, Dongzhou
Wang, Xueliang Kang, Hong Liu, Jiyang Wang, Shaowei Chen, Huaqiang
Cai, and Hui Huang (2013). Enhanced photocatalytic performances of
CeO2/TiO2 nanobelt heterostructures. small, 9(22), 3864-3872.
[61] Vignesh Kumaravel, Stephen Rhatigan, Snehamol Mathew, Marie
Clara Michel, John Bartlett, Michael Nolan, Steven J Hinder, Antonio
Gascó, César Ruiz-Palomar, Daphne Hermosilla and Suresh C Pillai "Mo
doped TiO2: impact on oxygen vacancies, anatase phase stability and
photocatalytic activity." Journal of Physics: Materials 3.2 (2020): 025008.
[62] Xuefeng Sun, Bin Sun, Qinghua Gong, Tingting Gao, Guowei Zhou
"Double-shell structural polyaniline-derived TiO2 hollow spheres for
enhanced photocatalytic activity." Transition Metal Chemistry 44 (2019):
555-564.
[63]M.K. Nowotny, L.R. Sheppard, T. Bak, J.J.T.J.o.P.C.C. Nowotny,
Defect chemistry of titanium dioxide. Application of defect engineering in
processing of TiO2-based
[64] Ponnusamy Nachimuthu, Wen-Chen Shih, Ru-Shi Liu, Ling-Yun Jang,
Jin-Ming Chen. "The study of nanocrystalline cerium oxide by X-ray
absorption spectroscopy." Journal of Solid State Chemistry 149.2 (2000):
408-413.
[65] Yang Liu, Pengfei Fang, Yunlang Cheng, Yuanpeng Gao, Feitai Chen,
Zhi Liu, Yiqun Dai. "Study on enhanced photocatalytic performance of
cerium doped TiO2-based nanosheets." Chemical engineering journal 219
(2013): 478-485.
[66] Ji Bong Joo, Ilkeun Lee, Michael Dahl, Geon Dae Moon, Francisco
Zaera, and Yadong Yin. "Controllable synthesis of mesoporous TiO2
hollow shells: toward an efficient photocatalyst." Advanced Functional
Materials 23.34 (2013): 4246-4254.
[67] V. Bem, M.C. Neves, M.R. Nunes, A.J. Silvestre, O.C.
Monteiro."Influence of the sodium/proton replacement on the structural,
morphological and photocatalytic properties of titanate nanotubes."
Journal of Photochemistry and Photobiology A: Chemistry 232 (2012): 50-
56.
[68] Manoj Pudukudy, Qingming Jia, Jingyou Yuan, Sivagnanam Megala,
Ramesh Rajendran, Shaoyun Shan."Influence of CeO2 loading on the
structural, textural, optical and photocatalytic properties of single-pot solgel derived ultrafine CeO2/TiO2 nanocomposites for the efficient
degradation of tetracycline under visible light irradiation." Materials
Science in Semiconductor Processing 108 (2020): 104891.
[69] Roberto Fiorenzaa, Marianna Bellardita, Tarek Barakat, Salvatore
Scirèa, Leonardo Palmisano."Visible light photocatalytic activity of
macro-mesoporous TiO2-CeO2 inverse opals." Journal of Photochemistry
and Photobiology A: Chemistry 352 (2018): 25-34

無法下載圖示 全文公開日期 2033/10/03 (校內網路)
全文公開日期 2073/10/03 (校外網路)
全文公開日期 2073/10/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE