簡易檢索 / 詳目顯示

研究生: 巫庭姍
Ting-Shan Wu
論文名稱: 硫化物固態電解質複合膜製程與黏合劑優化分析
Sulfide solid electrolyte thin-film processing and binder optimization
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
葉昀昇
Yun-Sheng Ye
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 130
中文關鍵詞: 鋰離子電池硫化物固態電解質硫銀鍺礦硫化物電解質膜全固態電池
外文關鍵詞: Lithium-ion battery, sulfide solid-state electrolyte, argyrodite, sulfide-electrolyte composite membrane, all-solid-state battery
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

使用硫化物電解質 (SE) 的全固態電池 (ASSB) 比使用有機電解質的傳統鋰離子電池更穩定、更安全。它們的應用潛力受到高度重視。常用的製膜方法可以大致分為濕式塗佈工藝以及乾式塗佈工藝。為了擴大硫化物電解質的生產,提高其能量密度,建立濕法塗佈法更符合工廠產線的設計,以取代過去用於製造電解質膜的粉末壓製法。低極性溶劑和聚合物可以形成更高離子電導率的硫化物固體電解質膜。目前從研究階段擴展成大面積製膜的最大問題與挑戰,是如何從各式高分子中選出合適的黏合劑,在導離度、機械強度以及適用的最低電解質膜厚度之間取得最佳的平衡值,以及建立一個明確的評估電解質膜的研究系統。
本研究首先將電解質膜進行混漿製程優化,選擇出適當的混漿方法、材料粒徑大小以及塗佈基材。由二甲苯(Xylene, XYL)作為溶劑,苯乙烯乙烯丁烯苯乙烯(SEBS)作為黏合劑以及硫化物固體電解質為Li6PS5Cl (LPSC)。透過這些製程參數的調整,成功製備出尺寸為22 cm× 6 cm、厚度小於100 μm的硫化物固體電解質複合片材。此外也開發了一個新型的脫膜方法,成功製出尺寸為6 cm × 8 cm獨立式電解質膜(free-standing film),方便電解質膜性能之研究。需要注意的是,黏合劑會影響硫化物固體電解質薄膜的力學性能,阻礙其鋰離子傳導,降低循環電化學性能。揮發性溶劑二甲苯也需要快速製造以保持複合漿料的可加工性。因此,在黏合劑的選定上我們也列出了初步快速篩選的條件,分別為分子量、機械性質以及黏合劑與材料相容性問題,最重要的是混合過程中不產生化學反應。由上述條件最後篩選出聚異物二烯(Polyisoprene, PI)作為新型LPSC電解質膜之黏合劑。
透過新型LPSC電解質膜建立完整電解質膜測試及研究系統,電解質膜在PI比例為5 %時,經由熱處理後有較高的導離度6.37×10-4 S/cm,在溫度80 ˚C下擁有最高的導離度2.46×10-3 S/cm,與商用LPSC錠狀電解質導離度相近。最後透過EIS和拉身試驗評去選擇電池組裝之比例,以雙層塗佈技術製備極片,以KP cell進行全固態電池組裝,第一層正極材料使用的是LNO@NCM811高鎳三元材料,其為表面塗有LiNbO3保護層的鎳鈷猛三元材料(LiNi8Co1Mn1O2,NMC(811)),第二層固態電解質使用添加3% PI之新型LPSC電解質膜,負極使用銦金屬。充電區間2 V~3.9 V、0.05 C,於室溫下施予100 MPa之外壓,首圈電容達122.72 mAh/g,經10圈充放電後可維持63.3 %以上的維持率。雖然在電池的壽命上還有很大的優化空間,但透過電解質膜製程與黏合劑優化分析以及新建立的獨立式電解質膜製程,本研究成功製備出實驗室首片可彎曲性自力式電解質薄膜。

關鍵字:鋰離子電池,硫化物固態電解質,硫銀鍺礦,硫化物電解質膜,全固態電池


All-solid-state batteries (ASSBs) using sulfide electrolytes (SE) are more stable and safer than conventional Li-ion batteries using organic electrolytes. Their application potential is highly valued. Commonly used film forming methods can be roughly divided into wet coating processes and dry coating processes. In order to expand the production of sulfide electrolytes and increase their energy density, the wet coating method was established to be more in line with the design of the factory production line to replace the powder pressing method used to manufacture electrolyte films in the past. Low-polarity solvents and polymers can form sulfide solid electrolyte composite films with higher ionic conductivity. At present, the biggest problem and challenge in expanding from the research stage to large-area film production is how to select suitable adhesives from various polymers. To achieve the best balance between conductivity, mechanical strength, and applicable minimum electrolyte film thickness, and to establish a clear research system for evaluating electrolyte films.
In this study, the slurry mixing process of the electrolyte film was optimized first, and the appropriate slurry mixing method, material particle size and coating substrate were selected. Xylene (XYL) is used as the solvent, styrene ethylene butene styrene (SEBS) is used as the binder, and the sulfide solid electrolyte is Li6PS5Cl (LPSC). Through the adjustment of these process parameters, a sulfide solid electrolyte composite sheet with a size of 22 cm × 6 cm and a thickness of less than 100 μm was successfully prepared. In addition, a novel stripping method was also developed, and a free-standing film with a size of 6 cm × 8 cm was successfully fabricated, which facilitates the study of the properties of the electrolyte film. It should be noted that the binder will affect the mechanical properties of the sulfide solid electrolyte film, hinder its ion conductivity, and reduce the cycle electrochemical performance. The volatile solvent xylene also needs to be manufactured quickly to maintain the processability of the composite slurry. Therefore, in the selection of binders, we also listed the conditions for preliminary rapid screening, which are molecular weight, mechanical properties, and compatibility between binders and materials. The most important thing is that no chemical reaction occurs during the mixing process. From the above conditions Polyisoprene (PI) was screened out as a new type of binder for LPSC composite films.
A complete electrolyte film testing and research system is established through the new LPSC electrolyte film. When the PI ratio of the film is 5 %, the conductivity after heat treatment is 6.37×10-4 S/cm. And at a temperature of 80 ˚C, it has the highest conductivity of 2.46×10-3 S/cm, which is similar to the conductivity of commercial LPSC ingot electrolyte. Finally, the ratio of battery assembly is selected through EIS and tensile test evaluation, electrode sheets are prepared by double-layer coating technology, and KP cell is used for all-solid-state battery assembly. The first layer of cathode material uses LNO@NCM811 high-nickel ternary material. It is a nickel-cobalt-manganese ternary material (LiNi8Co1Mn1O2, NMC(811)) coated with a LiNbO3 protective layer. The second layer of solid electrolyte uses a new LPSC¬ composite film with 3% PI added, and the anode uses indium metal. The charging range is 2 V~3.9 V, 0.05C, and an external pressure of 100 MPa is applied at room temperature. The capacity of the first cycle is as high as 122.72 mAh/g. After 10 cycles of charging and discharging, the retention rate is more than 63.3%. Although there is still a lot of room for optimization in battery life, the optimization analysis of the electrolyte film process and the binder and the newly established free standing film process, this study successfully prepared the first flexible self-supporting electrolyte membrane in the laboratory.
Key words: Lithium-ion battery, sulfide solid-state electrolyte, argyrodite, sulfide-electrolyte composite membrane, all-solid-state battery.

摘要 I Abstract III 目錄 VI 圖目錄 IX 表目錄 XV 第一章 鋰離子二次電池 1 1.1前言 1 1.2傳統鋰離子二次電池 2 1.3全固態電池 3 1.4固態電解質 4 第二章 文獻回顧 7 2.1氧化物固態電解質 7 2.2硫化物固態電解質 8 2.3銀硫鍺礦固態電解質 10 2.4 LPSC電解質膜問題與挑戰 10 2.5 電解質膜製造方法 13 2.5.1 濕式塗佈工藝 14 2.5.2可脫片式工藝 15 2.5.3 乾式塗佈工藝 17 2.6溶劑的選用 20 2.7 黏合劑介紹 24 2.7.1 SEBS (Styrene-Ethylene-Butylene-Styrene) 25 2.7.2 PI (Polyisoprene) 29 2.8研究動機 31 第三章 實驗方法及實驗儀器 33 3.1儀器設備及配件 33 3.2實驗藥品 34 3.3實驗步驟與分析方法 35 3.3.1硫化物固態電解質膜塗佈 35 3.3.2製備可脫式基材(OTMS) 36 3.3.3正極複合膜塗佈 36 3.3.4雙層膜塗佈(Double coating) 37 3.3.5 KP-cell 型電池組裝 38 3.4電化學測試 39 3.4.1 充放電測試 39 3.4.2 交流阻抗分析 39 3.5儀器分析及原理 40 3.5.1 熱重分析(TGA) 40 3.5.2 熱重分析(DSC) 40 3.5.3 場發射掃描式電子顯微鏡(FE-SEM) 40 3.5.4 X光能量色散圖譜分析(EDS) 40 3.5.5 X-ray 繞射分析(XRD) 41 3.5.6 拉曼散射光譜分析儀 (Raman) 42 3.5.7 拉伸試驗 (Tensile test) 42 3.5.8 固態電解質膜之空氣穩定測試 43 第四章 硫化物固態電解質膜製程優化 44 4.1塗佈方法之選擇 44 4.2 LPSC粒徑大小 46 4.3 塗佈基材選擇 49 4.4 SEBS 複合模 53 4.4.1 電化學測試 53 4.4.2 溫度測試 56 4.4.3 SEBS雙層塗佈複合膜電池 58 4.5 不同黏合劑的評估 61 第五章 電解質膜之研究系統建立 65 5.1 LPSC_PI 電解質膜 65 5.1.1 結構表徵 65 5.1.2 表面型態及元素分布 68 5.1.3 導離度 71 5.1.4 導電度 77 5.1.5 拉伸試驗 (Tensile test) 79 5.1.6 空氣穩定性測試 82 5.2 PI雙層塗佈複合膜電池 83 5.3 LPSC_PI乾混製程初步評估 94 第六章 結論 97 第七章 未來展望 100 參考資料 101

1. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2 (12), 2734-2751.
2. Zhang, X.-q.; Zhao, C.-z.; Huang, J.-q.; Zhang, Q.; Recent advances in energy chemical engineering of next generation lithium batteries. Engineer 2018, 4 (6), 831-847
3. Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries. Journal of Power Sources 2018, 394, 74-85.
4. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 1-7.
5. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013, 135 (4), 1167-1176.
6. Sun, Y.-K., Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Letters 2020, 5 (10), 3221-3223.
7. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources 2015, 282, 299-322.
8. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
9. Lu, J.; Chen, Z.; Ma, Z.; Pan, F.; Curtiss, L. A.; Amine, K., The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 2016, 11 (12), 1031-1038.
10. Ji, B.; Zhang, F.; Sheng, M.; Tong, X.; Tang, Y., A Novel and Generalized Lithiμm-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density. Adv Mater 2017, 29 (7), 1604219.
11. Divakaran, A. M.; Minakshi, M.; Bahri, P. A.; Paul, S.; Kμmari, P.; Divakaran, A. M.; Manjunatha, K. N., Rational design on materials for developing next generation lithiμm-ion secondary battery. Progress in Solid State Chemistry 2021, 62, 100298.
12. Liu, H.; Wei, Z.; He, W.; Zhao, J., Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management 2017, 150, 304-330.
13. Manthiram, A.; Yu, X.; Wang, S., Lithiμm battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
14. Li, C.; Wang, Z.-y.; He, Z.-j.; Li, Y.-j.; Mao, J.; Dai, K.-h.; Yan, C.; Zheng, J.-c., An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies 2021, 29, e00297.
15. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9), 1-4.
16. Sakuda, A.; Kuratani, K.; Yamamoto, M.; Takahashi, M.; Takeuchi, T.; Kobayashi, H., All-Solid-State Battery Electrode Sheets Prepared by a Slurry Coating Process. Journal of The Electrochemical Society 2017, 164 (12), A2474-A2478.
17. Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L., Interfaces in Solid-State Lithiμm Batteries. Joule 2018, 2 (10), 1991-2015.
18. Sudo, R.; Nakata, Y.; Ishiguro, K.; Matsui, M.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Imanishi, N., Interface behavior between garnet-type lithiμm-conducting solid electrolyte and lithiμm metal. Solid State Ionics 2014, 262, 151-154.
19. Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J. T.; Nam, K.-W.; Jung, H.-G.; Chung, K. Y., A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Materials 2020, 25, 224-250.
20. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithiμm Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-162.
21. Kaeriyama, A.; Munakata, H.; Kajihara, K.; Kanamura, K.; Sato, Y., Yoshida T., Evaluation of Electrochemical Characteristics of Li7La3Zr2O12 Solid Electrolyte. ECS Transactions 2009, 16 (24), 175.
22. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithiμm ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 2007, 46 (41), 7778-81.
23. Shimonishi, Y.; Toda, A.; Zhang, T.; Hirano, A.; Imanishi, N.; Yamamoto, O.; Takeda, Y., Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions. Solid State Ionics 2011, 183 (1), 48-53.
24. Kμmazaki, S.; Iriyama, Y.; Kim, K.-H.; Murugan, R.; Tanabe, K.; Yamamoto, K.; Hirayama, T.; Ogμmi, Z., High lithiμm ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochemistry Communications 2011, 13 (5), 509-512.
25. Latie, L.; Villeneuve, G.; Conte, D.; Le, Flem, G.; Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln=La, Nd). Journal of Solid State Chemistry 1984, 51 (3), 293-299
26. Yasuhiro, H.; Yuji, H.; Hiroo, K.; Jun, K., Order–disorder of the A-site ions and lithiμm ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11). Solid State lonics 1999, 121 (1-4), 245-251
27. Bohnke, O.; Bohnke, C.; Fourquet, J. L., Mechanism of ionic conduction and electrochemical intercalation of lithiμm into the perovskite lanthanμm lithiμm titanate. Solid State lonics 1996, 91 (1-2), 21-31
28. Inagμma, Y.; Katsμmata, T.; Itoh, M.; Morii, Y., Crystal Structure of a Lithiμm Ion-Conducting Perovskite La2/3−xLi3xTiO3 (x=0.05). Journal of Solid State Chemistry 2002, 166 (1), 67-72.
29. Yuejin, S.; Liquan, C.; Inagμma, Y.; Itoh, M., Oxide cathode with perovskite structure for rechargeable lithiμm batteries. Journal of Power Sources 1995, 54 (2), 397-402
30. Takada, K., Progress and prospective of solid-state lithiμm batteries. Acta Materialia 2013, 61 (3), 759-770.
31. Yang, Y.; Wu, Q.; Cui, Y.; Chen, Y.; Shi, S.; Wang, R. Z.; Yan, H., Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations. ACS Appl Mater Interfaces 2016, 8 (38), 25229-25242.
32. Du, Y. A.; Holzwarth, N. A. W., Mechanisms ofLi+diffusion in crystallineγ- andβ−Li3PO4electrolytes from first principles. Physical Review B 2007, 76 (17), 174302.
33. Shannon, R.D.; Taylor, B. E., English A. D., Berzins T., New Li Solid Electrolytes. International Symposium on Solid Ionic and Ionic-Electronic Conductors.1976, 22, 783-796
34. Hong, H.Y-P., Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors., Mterials Reaserch Bulletin 1978, 13 (2), 117-124
35. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsμmisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
36. Malugani, J. P.; Mercier, R.; Tachez, M., Correlation between structural and electrical properties in (1-x) AgPO3·xMX2 glasses (M = Pb2+, Hg2+; X = I-, Br-, Cl-) from Raman spectroscopy and ionic conductivity measurements, Solis State lonics 1986, 21 (2), 131-138
37. Yang, Y.; Wu, Q.; Cui, Y.; Chen, Y.; Shi, S.; Wang, R. Z.; Yan, H., Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations. ACS Appl Mater Interfaces 2016, 8 (38), 25229-25242.
38. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013, 135 (3), 975-978.
39. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal structure and phase transitions of the lithiμm ionic conductor Li3PS4. Solid State Ionics 2011, 182 (1), 53-58.
40. Tachez, M.; Malugan,i J. P.; Mercier, R.; Robert, G., Ionic conductivity of and phase transition in lithiμm thiophosphate Li3PS4. Solid State Ionics 1984, 14 (3), 181-185..
41. Hayashi, A.; Hama, S.; Minami, T.; Tatsμmisago, M., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications 2003, 5 (2), 111-114.
42. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsμmisago, M., High lithiμm ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics 2006, 177 (26-32), 2721-2725.
43. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsμmisago, M., A sulphide lithiμm super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
44. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithiμm Batteries. Acc Chem Res 2021, 54 (12), 2717-2728.
45. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl 2008, 47 (4), 755-758.
46. Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsμmisago, M., Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. Journal of the Ceramic Society of Japan 2013, 121 (1419), 946-949.
47. Sakuda, A.; Hayashi, A.; Tatsμmisago, M., Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithiμm battery. Sci Rep 2013, 3, 2261.
48. Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.-G.; Choi, N.-S.; Jung, Y. S., Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithiμm-ion batteries. J. Mater. Chem. A 2017, 5 (39), 20771-20779.
49. Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M., Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10 (39), 33296-33306.
50. Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W., Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. Acc Chem Res 2021, 54 (17), 3390-3402.
51. Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol 2020, 15 (3), 170-180.
52. Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W., Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of The Electrochemical Society 2017, 164 (9), A2075-A2081.
53. Kim, D. H.; Lee, Y.-H.; Song, Y. B.; Kwak, H.; Lee, S.-Y.; Jung, Y. S., Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2020, 5 (3), 718-727.
54. Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S., Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithiμm-ion batteries. Nano Lett 2015, 15 (5), 3317-33123.
55. Wang, C.; Yu, R.; Duan, H.; Lu, Q.; Li, Q.; Adair, K. R.; Bao, D.; Liu, Y.; Yang, R.; Wang, J.; Zhao, S.; Huang, H.; Sun, X., Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. ACS Energy Letters 2021, 7 (1), 410-416.
56. Li, M.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P., Solid‐State Lithiμm–Sulfur Battery Enabled by Thio‐LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Advanced Functional Materials 2020, 30 (14), 1910123.
57. Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S.; Chen, Z., Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
58. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsμmisago, M., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178 (15-18), 1163-1167.
59. Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K., Instantaneous preparation of high lithiμm-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Adv. 2017, 7 (73), 46499-46504.
60. Wang, Y.; Lu, D.; Bowden, M.; El Khoury, P. Z.; Han, K. S.; Deng, Z. D.; Xiao, J.; Zhang, J.-G.; Liu, J., Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials 2018, 30 (3), 990-997.
61. Xu, R. C.; Xia, X. H.; Yao, Z. J.; Wang, X. L.; Gu, C. D.; Tu, J. P., Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithiμm ion batteries. Electrochimica Acta 2016, 219, 235-240.
62. Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
63. Vinodh, R.; Ilakkiya, A.; Elamathi, S.; Sangeetha, D., A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization. Materials Science and Engineering: B 2010, 167 (1), 43-50.
64. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chemistry of Materials 2015, 28 (1), 266-273.
65. Zhang, W.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J., Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS Appl Mater Interfaces 2018, 10 (26), 22226-22236.

無法下載圖示 全文公開日期 2027/08/25 (校內網路)
全文公開日期 2027/08/25 (校外網路)
全文公開日期 2027/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE