簡易檢索 / 詳目顯示

研究生: 楊京育
Ching-yu Yang
論文名稱: 開發燃料電池之質子傳導膜及其性質研究
Development of Proton Exchange Membrane Materials in Fuel Cell
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 蔡英文
Yin-Wen Tsai
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 燃料電池質子交換膜磺酸基
外文關鍵詞: fuel cell, proton exchange membranes, sulfonic acid
相關次數: 點閱:439下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究成功合成主鏈含有疏水基結構之聚苯醚共聚物(SPAEs),並將磺酸基導入在側鏈上,首先經由親核性取代聚合反應合成含CF3之Poly(arylene ether)s (PAEs),以Chlorosulfonic acid為磺酸化試劑,直接將聚合物磺酸化,即可得到磺酸基位於側鏈上的SPAEs。
  所合成的側鏈型SPAEs,均可塗佈成具有韌性的薄膜,且具有好的熱安定性與機械性質。其質子傳導度會隨著溫度增加而增加,本研究所合成側鏈型SPAEs,大部分它們的質子傳導度比Nafion 117高,在80 ℃,SPAE2-CH100系列(IEC=1.50 mequiv./g)有最高的質子傳導度為288 mS/cm。與主鏈型聚合物相比較,側鏈型SPAEs系列具有相對低吸濕率、膨潤度與相對高質子傳導度的特性,由TEM結果顯示側鏈型SPAEs親水相均勻分布,容易形成連續的離子通道,質子傳導度也較高。其甲醇滲透率在1.2~6.0×10-7 cm2/sec之間,都低於Nafion 117(16×10-7 cm2/sec)。因此這些含側鏈型磺酸基的SPAEs具有高質子傳導度、低甲醇滲透率和合理的穩定性,是很有潛力成為直接甲醇燃料電池的質子交換膜材料。


A series of side-chain-type sulfonated trifluoromethyl-based poly(arylene ether)s (SPAEs) were prepared by polycondensation via a nucleophilic substitution reaction followed by post-sulfonation.
Tough and flexible films of the SPAEs with good thermal and mechanical stability were obtained by solvent cast process in N,N-dimethylacetamide (DMAc) solution. Proton conductivities of the copolymers increased gradually with increase in temperature. Most of SPAEs exhibited higher proton conductivity than Nafion 117. SPAE2-CH100 had the highest proton conductivity (288 mS/cm at 80 ℃) among the tested membranes. The side-chain-type SPAEs film showed high proton conductivity and good dimensional stability, and their water uptake and swelling ratio were lower than those of the main-chain-type SPAEs with similar ion exchange capacity (IEC) value. Transmission electron microscopy (TEM) was used to examine the microstructures of the membranes and the side-chain-type results revealed that significant hydrophilic/hydrophobic microphase separation with spherical, uniform-size and well-dispersed hydrophilic domains was afforded. In addition, the membranes exhibited low methanol permeability in the range of 1.2~6.0×10-7 cm2/sec, which are much lower than that of Nafion 117 (16×10-7 cm2/sec).
Thus, these side-chain-type SPAEs could be the promising materials as alternative to Nafion membrane for direct methanol fuel cells applications because of them with high proton conductivity, low methanol permeability, and reasonable long-term stability.

摘要 I Abstract II 目錄 III Figure 索引 VI Table 索引 X 第一章 緒論 1 1.1 前言 1 1.2 燃料電池的介紹 3 1.2.1 燃料電池的發展 3 1.2.2 燃料電池的運作原理 5 1.2.3 燃料電池的種類介紹:2-4 7 1.2.4 燃料電池的特點與應用 9 1.3 直接甲醇燃料電池(DMFC)介紹 11 1.4 文獻回顧 15 1.5 研究動機 24 1.6 研究內容 25 第二章 實驗 26 2.1 實驗藥品 26 2.2 側鏈型與主鏈型磺酸化聚苯醚共聚物實驗程序 29 2.2.1 單體合成 30 2.2.2 合成側鏈型磺酸化聚苯醚共聚物 (SPAE-CHs) 31 2.2.3 合成側鏈型磺酸化聚苯醚共聚物 (SPAE-PHs) 33 2.2.4 合成主鏈含磺酸基之聚苯醚共聚物 (MSPAE-CHs) 35 2.2.5 合成主鏈含磺酸基之聚苯醚共聚物 (MSPAE-PHs) 37 2.2.6 合成Sulfonated model compound, SM1 39 2.3 聚合物之物性與化性分析 41 第三章 結果與討論 49 3.1 單體與SPAE的合成 49 3.2 固有黏度測試 55 3.3 溶解度測試 57 3.4 熱性質測試 59 3.5 離子交換能力(IEC)量測 64 3.6 吸濕率與膨潤度的測試 66 3.6.1 溫度對吸濕率的效應 66 3.6.2 溫度對膨潤度的效應 69 3.7 質子傳導度分析 71 3.7.1 溫度對質子傳導度的效應 71 3.7.2 吸濕率和IEC對質子傳導度的效應 71 3.7.3 濕度對質子傳導度的效應 71 3.8 甲醇滲透率量測與相對選擇率 71 3.9 水解安定性與氧化安定性測試 71 3.9.1 水解安定性量測 71 3.9.2 氧化安定性量測 71 3.10 機械強度測試 71 第四章 結論 71 參考文獻 71

1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2nd Edition)”, John Wiley & Sons Inc, 2003.
2. 衣寶廉,燃料電池-高效、環保的發電方式,五南圖書出版股份限公司,2003年.
3. 黃鎮江,燃料電池,全華科技圖書出版股份有限公司,2005年.
4. 黃鎮江,綠色能源,全華科技圖書出版股份有限公司,2008年.
5. 陳維新,燃料電池,高立圖書有限公司,2009年.
6. W. R. Grove, Philosophical Magazine Series 3, 14, 127(1839).
7. 鄭耀宗、徐耀昇,”燃料電池技術的現況分析”,八十八年節約能源論文發表會論文專輯,409-422頁.
8. 工業材料雜誌,215期.
9. S. Surampudi, S. R. Narayanan, E. Vamos, Journal of Power Sources, 47, 377 (1994).
10. M. P. Hogarth, and G. A. Hards, Platinum Matals Review, 40, 150 (1996).
11. 盧敏彥、廖怡萱、黃俊傑、張美元,高分子電解質膜燃料電池(PEMFC)陰極電極,215 (2004).
12. V. I. Basura, C. Chuy, P. D. Beattie, S. Holdcroft, Journal of Electroanalytical Chemistry, 501, 77 (2001).
13. Y. Gao, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, X. Li, S. Kaliaguine, Polymer, 47, 808 (2006).
14. D. S. Kim, G. P. Robertson, Y. S. Kim, M. D. Guiver, Macromolecules, 42, 957 (2009).
15. Y. Chen, Y. Meng, S. Wang, S. Tian, Y. Chen, A. S. Hay, Journal of Membrane Science, 280, 433 (2006).
16. J. Pang, H. Zhang, X. Li, D. Ren, Z. Jiang, Macromolecular Rapid Communications, 28, 2332 (2007).
17. M. H. Jeong, K. S. Lee, Y. T. Hong, J. S. Lee, Journal of Membrane Science, 314, 212 (2008).
18. M. Guo, B. Liu, S. Guan, C. Liu, H. Qin, Z. Jiang, Journal of Membrane Science, 362, 38 (2010).
19. B. Liu, W. Hu, G. P. Robertson, Y. S. Kim, Z. Jiang, M. D. Guiver, Fuel Cells, 10, 45 (2010).
20. B. Liu, W. Hu, Y. S. Kim, H. Zou, G. P. Robertson, Z. Jiang, M. D. Guiver, Electrochimica Acta, 55, 3817 (2010).
21. K. Miyatake, A. S. Hay, Journal of Polymer Science: Part A: Polymer Chemistry, 39, 3211 (2001).
22. K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Macromolecules, 34, 2065 (2001).
23. L. Wang, Y. Z. Meng, S. J. Wang, X. Y. Shang, L. Li, A. S. Hay, Macromolecules, 37, 3151 (2004).
24. N. Li, D. W. Shin, D. S. Hwang, Y. M. Lee, M. D. Guiver, Macromolecules, 43, 9810 (2010).
25. N. Li, D. S. Hwang, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, Macromolecules, 44, 4901 (2011).
26. K. Shao, J. Zhu, C. Zhao, X. Li, Z. Cui, Y. Zhang, H. Li, D. Xu, G. Zhang, T. Fu, J. Wu, H. Na, W. Xing, Journal of Polymer Science: Part A: Polymer Chemistry, 47, 5772 (2009).
27. S. Seesukphronrarak, K. Ohira, K. Kidena, N. Takimoto, C. S. Kuroda, A. Ohira, Polymer 51, 623 (2010).
28. H. Ghassemia, J. E. McGrath, Polymer, 45, 5847 (2004).
29. K. Nakabayashi, T. Higashihara, M. Ueda, Macromolecules, 44, 1603 (2011).
30. K. Xu, H. Oh, M. A. Hickner, Q. Wang, Macromolecules, 44, 4605 (2011).
31. N. Tan, G. Xiao, D. Yan, Chemistry of Materials, 22, 1022 (2010).
32. S. W. Chuang, L. C. Hsu, Journal of Polymer Science: Part A: Polymer Chemistry, 44, 4508 (2006).
33. K. Yoshimura, K. Iwasaki, Macromolecules, 42, 9302 (2009).
34. G. Qian, B. C. Benicewicz, Journal of Polymer Science: Part A: Polymer Chemistry, 47, 4064 (2009).
35. H. Pu, L. Wang, H. Pan, D. Wan, Journal of Polymer Science: Part A: Polymer Chemistry, 48, 2115 (2010).
36. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, J. E. McGrath, Journal of Applied Polymer Science, 100, 4595 (2006).
37. W. L. Harrison, F. Wang, J. B. Mecham, V. A. Bhanu, M. Hill, Y. S. Kim, J. E. McGrath, Journal of Polymer Science: Part A: Polymer Chemistry, 41, 2264 (2003).
38. 王碧婷,合成含三氟甲基之磺酸化聚苯醚共聚物質子交換膜材料之性質研究,國立台灣科技大學化工系 (2010).
39. 邱茂興,合成新型含雜環結構之磺酸化聚醯亞胺於質子交換膜材料之性質研究,國立台灣科技大學化工系 (2009).
40. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath, Journal of Membrane Science, 197, 231(2002).
41. E. P. Jutemar, P. Jannasch, ACS Applied Materials & Interfaces, 2, 3718 (2010).
42. B. Liu, G. P. Robertson, D. S. Kim, X. Sun, Z. Jiang, M. D. Guiver, Polymer, 51, 403 (2010).
43. G. Liang, H. Hisatani, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama, Journal of Applied Polymer Science, 116, 267(2009).
44. Z. Li, X. Liu, D. Chao, W. Zhang, Journal of Power Sources, 193, 477 (2009).
45. K. Endo, T. Yamade, Journal of Applied Polymer Science, 118, 1582-1588 (2010).

無法下載圖示 全文公開日期 2016/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE