簡易檢索 / 詳目顯示

研究生: 李嘉文
Jia-Wun Li
論文名稱: 可降解型氟化聚氨基甲酸酯合成與其性質之研究
The study on synthesis and properties of degradable fluorinated polyurethanes
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
孫茂誠
Maw-Cherng Suen
李訓清
Hsun-Tsing Lee
邱智瑋
Chih-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 153
中文關鍵詞: 聚氨基甲酸酯可降解性氟化聚氨酯蓖麻油氟譜凡德瓦力
外文關鍵詞: Polyurethane, Degradability, Fluorinated Polyurethane, Castor Oil, Fluorine Spectrum, Van der Waals force
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探討環保型氟化聚氨酯的性質,本論文使用了數種不同的有機氟化物對聚氨酯進行改質,並設計出一種新型側鏈型氟化鏈延長劑引入聚氨酯當中,並進一步了解其水解性質與熱穩定性與機械性質等。同時在儀器分析上面,論文中利用了曲線擬合技術對FTIR、XPS進行分峰,探討不同的有機氟化物與聚氨酯之間凡得瓦力的影響,也利用1D NMR與2D NMR識別有機氟化物的結構以及與聚氨酯之間的耦合情況,因此本論文不同的有機氟化物對聚氨酯的影響分成四個部分進行詳細的探討。
    第一部分使用4,4’-diphenylmethane diisocyanate (MDI)作為硬鏈段,polycaprolactone diol (PCL)為軟鏈段以及1H,1H,10H,10H-Perfluor-1,10- Decanediol(PFD)作為鏈延長劑,合成新型聚氨基甲酸酯(PFD/PUs),並利用核磁共振儀(NMR)進行1H NMR、19FNMR、19F-19F COSY、1H-19F COSY、HMBC分析PFD/PUs 結構,並與FTIR證實成功合成PFD/PUs。同時改變軟鏈段與全氟烷鏈鏈延長劑後,利用FTIR與XPS 曲線擬合探討全氟烷鏈鏈延長劑與聚氨酯之間氫鍵作用力的關係,並使用AFM探討全氟烷鏈鏈延長劑與聚氨酯之間微相結構的變化,TGA、DSC、DMA則探討全氟烷鏈鏈延長劑與聚氨酯之間熱性質的影響,隨後使用拉伸試驗機探討全氟烷鏈鏈延長劑對聚氨酯機械性能的影響。
    第二部分為了開發可商業化的新型透濕防水膜,本研究成功利用Pentadecafluorooctanoyl chloride (PDFC)與2-Amino-2-methyl-1,3-propanediol (AMPD)進行簡易的合成製備出新型側鏈型長鏈段氟化鏈延長劑(AMPF),並利用1H、13C、19F 與19F-19F NMR判定AMPF的結構。為了提倡環保特性,將生物可降解的PCL作為聚氨酯的軟鏈段,而MDI作為硬鏈段以及AMPF作為鏈延長劑,成功將AMPF引入PCL-based polyurethane中製備出AMPF/PUs。為了探討AMPF對PCL-based polyurethane帶來的影響,利用NMR與GPC對AMPF/PUs作初步的判定,而FTIR、XPS以及AFM將利用曲線擬合探討AMPF/PUs薄膜內凡德瓦力與微相分離的變化,AMPF/PUs的熱性質係利用TGA與DMA進行探討,而DMA與拉伸試驗則揭示AMPF/PUs薄膜的機械特性。
    第三部分成功將短鏈的氟化擴鏈劑(TFD)引入於蓖麻油基聚氨酯(COPU)中形成蓖麻油基氟化聚氨酯(TF/COPUs)。目前已知有機氟對聚氨酯間存在C-F∙∙∙H與C-F∙∙∙C=O的相互作用力,為了探討短鏈氟化擴鏈劑對蓖麻油基聚氨酯帶來的影響,TF/COPUs的基本性質係利用GPC測量TF/COPUs的分子量。再進行FTIR與XPS曲線擬合探討短鏈氟化擴鏈劑添加含量的不同,對C-F∙∙∙H與C-F∙∙∙C=O相互作用力的變化。這種相互作用力往往會影響到聚氨酯的相分離程度、熱性質與機械性質,因此利用AFM測量TF/COPUs的形貌與相變,而TGA與DSC探討TF/COPUs的熱性質,黏彈性與機械強度則利用DMA與拉伸試驗機所揭示。最後,將TF/COPUs浸泡在3wt% NaOH 溶液中計算出不同時間的重量損失,並利用SEM觀測TF/COPUs形貌變化。
    第四部分為了開發出長效性生物降解聚合物,成功以MDI作為硬鏈段、PCL作為軟鏈段以及蓖麻油作為功能性單體合成為蓖麻油基預聚物,再將不同鏈長的全氟烷鏈引入蓖麻油基預聚物中合成出不同氟鏈段長度的蓖麻油基氟化聚氨酯(FCOPUs),這些不同氟鏈段的蓖麻油基聚氨酯具有相似的分子量使本篇研究能夠準確地探討FCOPUs中氟鏈段長度對FCOPUs帶來的影響。經由FTIR與XPS曲線擬合後證實C-F…H-N與C-F…C=O之間具有相互作用力,這種作用力伴隨越長的含氟鏈段隨之增加。FCOPUs的熱性質經由TGA、DSC、DMA證實越長的含氟鏈段能夠提高FCOPUs的熱穩定性,由AFM與拉伸試驗中顯示當引入越長的含氟鏈段於FCOPUs中能夠增加FCOPUs相分離程度並伴隨著抗拉強度的提高。隨後,將FCOPUs浸漬3wt%NaOH溶液中計算FCOPUs的重量損失後利用SEM觀測其表面結構的變化。


    In order to explore the properties of environmentally friendly fluorinated polyurethane, this dissertation used several different organic fluorides to modify the polyurethane. A novel fluorinated chain extender of side chain type was to introduce into the polyurethane, and further understand its hydrolysis, thermal and mechanical properties. In the analysis of the instrument, the dissertation explores the effect of van der Waals force between different organic fluorides and polyurethanes by curve-fitting techniques of FTIR and XPS, and identifies structure and coupling between different organic fluorides and polyurethanes by 1D NMR and 2D NMR. Therefore, the effect of different organic fluorides on polyurethane in this dissertation is divided into four parts for detailed discussion.
    In part I, The novel biodegradable long segment fluorine-containing polyurethane (PFD/PUs) were synthesized using 4,4’-diphenylmethane diisocyanate(MDI) and 1H,1H,10H,10H-Perfluor-1,10-Decanediol (PFD) as hard segment, Polycaprolactone diol(PCL) is a biodegradable soft segment. Nuclear magnetic resonance (NMR) was used to perform 1H NMR, 19F NMR, 19F-19F COSY, 1H-19F COSY, and HMBC analyses on the PFD/PU structures. The results, together with those from Fourier-transform infrared spectroscopy (FTIR), verified that the PFD/PUs had been successfully synthesized. Additionally, the soft segment and PFD were changed, after which FTIR and XPS peak-differentiation-imitating analysis were employed to examine the relationship of the hydrogen bonding reaction between the PFD chain extender and PU. Subsequently, atomic force microscopy was adopted to investigate the changes in the microphase structure between the PFD chain extender and PU, after which the effects of the thermal properties between them were investigated through thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Finally, the effect of the PFD chain extender on the mechanical properties of the PU was investigated through a tensile strength test.
    In part II. To develop marketable new waterproof and breathable membranes, this study successfully applied a simple synthesis method to combine pentadecafluorooctanoyl chloride and 2-Amino-2-methyl-1,3-propanediol into a novel long-segment side-chain fluorinated chain extender, AMPF, the structure of which structure was examined using 1H, 13C, 19F, and 19F-19F nuclear magnetic resonance (NMR) spectroscopy. To promote environmental-friendliness, biodegradable polycaprolactone (PCL) was chosen to supply the soft segment of polyurethane (PU), methylene diphenyl diisocyanate to supply the hard segment, and AMPF to serve as the chain extender. The successful introduction of AMPF into the PCL-based PU enabled the production of AMPF/PUs. To investigate the effect of AMPF on PCL-based PU, NMR and gel permeation chromatography were performed for the preliminary appraisal of AMPF/PUs; curve fitting was applied in Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy to determine the difference in van der Waals forces and microphase separation in membrane AMPF/PUs; a thermal gravimetric analysis and dynamic mechanical analysis were conducted to determine the thermal properties of AMPF/PUs; a dynamic mechanical analysis and tensile test were conducted to determine the mechanical properties of AMPF/PUs.
    The part III successfully introduced a short-segment fluorine-containing chain extender (2,2,3,3-Tetrafluoro-1,4-butanediol (TFD)) into castor oil-based polyurethane (COPU) to synthesize TF/COPU samples. Studies have indicated that C–F∙∙∙H and C–F∙∙∙C=O interactions occur between organic fluorine and PU. To explore the effect of the short-segment fluorine-containing chain extender on COPU, this study used gel permeation chromatography to measure the molecular weights of the TF/COPU samples. Subsequently, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy curve-fitting methods were used to explore the effect of different amounts of the short-segment fluorine-containing chain extender added on C–F∙∙∙H and C–F∙∙∙C=O interactions. These interactions generally affect the phase separation levels, thermal properties, and mechanical properties of PUs. Therefore, atomic force microscopy was used to measure the morphologies and phase changes of the TF/COPU samples. Thermogravimetric analysis and differential scanning calorimetry were employed to examine the thermal properties of the TF/COPU samples. Furthermore, dynamic mechanical analysis and tensile testers were adopted to measure the viscoelasticity and mechanical strength of the samples. Finally, we dipped the TF/COPU in a 3wt% NaOH solution, calculated the weight loss of the TF/COPU, and observed their surface structure by using scanning electron microscopy.
    In part IV.To develop a durable, biodegradable polymer, this study successfully synthesized a castor-oil-based prepolymer by using methylene diphenyl diisocyanate as hard segments, polycaprolactone as soft segments, and castor oil as a functional monomer. We added perfluorinated alkyl segments with varying chain lengths into the castor-oil-based polymer to synthesize castor-oil-based fluoridated biopolyurethanes (FCOPUs) of different fluorinated segment lengths. The castor-oil-based polyurethane with different fluorinated segment lengths had similar molecular weights, which enabled accurate analysis of the effect of the lengths of fluorinated segments on FCOPUs. Nuclear magnetic resonance (NMR) was used to perform 1H NMR, 19F NMR, 19F-19F COSY, 1H-19F COSY, and HMBC analyses on the FCOPU structures. The results of Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy curve fitting verified the interaction between C-F∙∙∙H-N and C-F∙∙∙C=O. This interaction increased as the fluorinated segments became longer. Regarding the thermal properties of the FCOPUs, the thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis results revealed that long fluorinated segments were associated with increased thermal stability in the FCOPUs. The atomic force microscopy and tensile strength test suggested that long fluorinated segments contained in the FCOPUs increased the degree of phase separation and tensile strength in FCOPUs. Finally, we dipped the FCOPUs in a 3wt% NaOH solution, calculated the weight loss of the FCOPUs, and observed their surface structure by using scanning electron microscopy.

    中文摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 X 表目錄 XV 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 文獻回顧 4 2.1 聚氨基甲酸酯 4 2.2 氟原子 13 2.3 氟化聚氨酯 14 第3章 實驗 16 3.1 實驗藥品 16 3.2 儀器及操作方法 22 3.3 合成聚氨酯 27 第4章 長鏈段含氟鏈延長劑對聚氨基甲酸酯的影響 28 4.1 簡介 28 4.2 實驗步驟 30 4.3 實驗配方 31 4.4 結果與討論 32 4.5 結論 53 第5章 側鏈型長鏈段含氟鏈延長劑對聚氨基甲酸酯的影響 54 5.1 簡介 54 5.2 實驗步驟 56 5.3 實驗配方 59 5.4 結果與討論 60 5.5 結論 80 第6章 短鏈氟鏈段引入綠色蓖麻油基聚氨酯的影響 81 6.1 簡介 81 6.2 實驗步驟 83 6.3 實驗配方 85 6.4 結果與討論 86 6.5 結論 105 第7章 不同鏈長氟化延長劑對蓖麻油基聚氨酯性質與降解之影響 106 7.1 簡介 106 7.2 實驗步驟 108 7.3 實驗配方 110 7.4 結果與討論 111 7.5 結論 134 第8章 總結 135 References 136 附錄 153

    1. Plastics Europe 2019. “Plastics, the facts 2019. an analysis of european plastics production, demand and waste data. ” Available online: https://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf
    2. Anbukarasu, P., Martínez-Tobón, D. I., Sauvageau, D., and Elias, A. L. 2017. “A diffraction-based degradation sensor for polymer thin films.” Polymer Degradation and Stability 142: 102-110. doi: 10.1016/j.polymdegradstab.2017.05.020
    3. Berger, R., Resnati, G., Metrangolo, P., Weber, E., and Hulliger, J. 2011. “Organic fluorine compounds: a great opportunity for enhanced materials properties.” Chemical Society Reviews 40: 3496–3508. doi: 10.1039/C0CS00221F
    4. 李忠諺 2019,“水性聚氨酯與聚丙烯酸形成互穿型網狀結構材料之研究” 碩士學位論文,國立臺北科技大學。
    5. 劉厚鈞,2012年,聚氨酯彈性體手冊第二版,化學工業出版社。
    6. Nair, P. A., and Ramesh, P. 2012. “Synthesis and characterization of calcium-containing polyurethane using calcium lactate as a chain extender.” Polymer Journal 44: 1009-1014. doi: 10.1038/pj.2012.51
    7. Jang, J. Y., and Do, J. Y. 2014. “Synthesis and evaluation of thermoplastic polyurethanes as thermo-optic waveguide materials.” Polymer Journal 46: 349-354. doi: 10.1038/pj.2014.7
    8. Chang, K., Jia, H., and Gu, S. Y. 2019. “A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds.” European Polymer Journal 112: 822-831. doi: 10.1016/j.eurpolymj.2018.11.005
    9. Wang, C. H., Hou, G. G., Du, Z. Z., Cong, W., Sun, J. F., Xu, Y. Y., and Liu, W. S. 2016. “Synthesis, characterization and antibacterial properties of polyurethane material functionalized with quaternary ammonium salt.” Polymer Journal 48: 259-265. doi: 10.1038/pj.2015.108
    10. Kim, H., Lee, S., and Kim, H. 2019. “Electrical heating performance of electro-conductive para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite.” Scientific Reports 9: 1-10. doi: 10.1038/s41598-018-37455-0
    11. Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., and Advincula, R. C. 2017. “3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties.” ACS Applied Materials & Interfaces 9: 4015-4023. doi: 10.1021/acsami.6b11793
    12. Sartori, P., and Ignat'ev, N. 1998. “The actual state of our knowledge about mechanism of electrochemical fluorination in anhydrous hydrogen fluoride (Simons process).” Journal of Fluorine Chemistry, 87, 157-162. doi: 10.1016/S0022-1139(97)00139-5
    13. (德)皮爾·基爾施,吳永明、邢春暉譯,2015年,現代有機氟化學--合成、反應、應用(原著第二版,全面修訂和擴展版),化學工業出版社。
    14. Yuan, Y., Li, J., Dong, and Y., Miao, H. 2020. “UV-curable fluorinated polycarbonate polyurethane with improved surface properties.” Journal of Coatings Technology and Research doi: 10.1007/s11998-020-00329-0
    15. Zhang, L., Kong, Q., Kong, F., Liu, T., and Qian, H. 2020. “Synthesis and surface properties of novel fluorinated polyurethane base on F‐containing chain extender.” Polymers for Advanced Technologies 31: 616-629. doi: 10.1002/pat.4802
    16. Zhao, B., Jia, R., Zhang, Y., Liu, D., and Zheng, X. 2019. “Design and synthesis of antibacterial waterborne fluorinated polyurethane.” Journal of Applied Polymer Science 136: 46923. doi: 10.1002/app.46923
    17. Wen, J., Sun, Z., Fan, H., Chen, Y., and Yan, J. 2019. “Synthesis and characterization of a novel fluorinated waterborne polyurethane.” Progress in Organic Coatings 131: 291-300. doi: 10.1016/j.porgcoat.2019.02.029
    18. Qiao, Z., Xu, D., Yao, Y., Song, S., Yin, M., and Luo, J. 2019. “Synthesis and antifouling activities of fluorinated polyurethanes.” Polymer International 68: 1361-1366. doi: 10.1002/pi.5826
    19. Wang, P. C., Lu, D., Wang, H., and Bai, R. K. 2019. “A new strategy for the synthesis of fluorinated polyurethane.” Polymers 11: 1440. doi: 10.3390/polym11091440
    20. He, T., Wang, G., Wang, Y., Liu, Y., Lai, W., Wang, X., Feng Y., and Liu, X. 2019. “Simultaneously enhancing of wear-resistant and mechanical properties of polyurethane composite based on the selective interaction of fluorinated graphene derivatives.” Composites Part B: Engineering 169: 200-208. doi: 10.1016/j.compositesb.2019.04.014
    21. Khayet, M., García-Payo, C., and Matsuura, T. 2019. “Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation.” Journal of Membrane Science 588: 117215. doi: 10.1016/j.memsci.2019.117215
    22. Alagi, P., Choi, Y. J., and Hong, S. C. 2016. “Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane.” European Polymer Journal 78: 46-60. doi: 10.1016/j.eurpolymj.2016.03.003
    23. Guo, Y., Zhang, R., Xiao, Q., Guo, H., Wang, Z., Li, X., Chen, J., and Zhu, J. 2018. “Asynchronous fracture of hierarchical microstructures in hard domain of thermoplastic polyurethane elastomer: Effect of chain extender.” Polymer 138: 242-254. doi: 10.1016/j.polymer.2018.01.035
    24. Oprea, S. 2009. “Effect of composition and hard-segment content on thermo-mechanical properties of cross-linked polyurethane copolymers.” High Performance Polymers 21: 353–370. doi: 10.1177/0954008308092071
    25. Li, G., Li, E., Wang, C., and Niu, Y. 2015. “Effect of the blocked ratio on properties of natural fiber–waterborne blocked polyurethane composites.” Journal of Composite Materials 49: 1929-1936. doi: 10.1177/0021998314541303
    26. Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M. B., and Lazzeri, A. 2015. “Flexible polyurethane foams green production employing lignin or oxypropylated lignin.” European Polymer Journal 64: 147-156. doi: 10.1016/j.eurpolymj.2014.11.039
    27. Javni, I., Petrović, Z. S., Guo, A., and Fuller, R. 2000. “Thermal stability of polyurethanes based on vegetable oils.” Journal of Applied Polymer Science 77: 1723-1734. doi: 10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K
    28. Chuang, F. S., Tsen, W. C., and Shu, Y. C. 2004. “The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes.” Polymer Degradation and Stability 84: 69-77. doi: 10.1016/j.polymdegradstab.2003.10.002
    29. Liu, C. H., Lee, H. T., Tsou, C. H., Gu, J. H., Suen, M. C., and Chen, J. K. 2017. “In situ polymerization and characteristics of biodegradable waterborne thermally-treated attapulgite nanorods and polyurethane composites” Journal of Inorganic and Organometallic Polymers and Materials 27: 244-256. doi: 10.1007/s10904-017-0679-5
    30. Tayfun, U., Kanbur, Y., Abacı, U., Güney, H. Y., and Bayramlı, E. 2017. “Mechanical, electrical, and melt flow properties of polyurethane elastomer/surface-modified carbon nanotube composites.” Journal of Composite Materials 51: 1987-1996. doi: 10.1177/0021998316666158
    31. Verma, G., Kaushik, A., and Ghosh, A. K. 2013. “Preparation, characterization and properties of organoclay reinforced polyurethane nanocomposite coatings.” Journal of Plastic Film and Sheeting 29: 56-77. doi: 10.1177/8756087912448183
    32. Jiang, X., Gu, J., Shen, Y., Wang, S., and Tian, X. 2011. “New fluorinated siloxane-imide block copolymer membranes for application in organophilic pervaporation.” Desalination 265: 74–80. doi: 10.1016/j.desal.2010.07.034
    33. Chen, J. H., Hu, D. D., Li, Y. D., Meng, F., Zhu, J., and Zeng, J. B. 2018. “Castor oil derived poly (urethane urea) networks with reprocessibility and enhanced mechanical properties.” Polymer 143: 79-86. doi: 10.1016/j.polymer.2018.04.013
    34. Baradie, B., and Shoichet, M. S. 2005. “Novel fluoro-terpolymers for coatings applications.” Macromolecules 38: 5560-5568. doi: 10.1021/ma047792s
    35. Lee, S. R., Kim, M. R., Jo, E. H., and Yoon, K. B. 2016. “Synthesis of very low birefringence polymers using fluorinated macromers for polymeric waveguides.” High Performance Polymers 28: 131-139. doi: 10.1177/0954008315572492
    36. Saritha, B., and Thiruvasagam, P. 2015. “Synthesis of diol monomers and organosoluble fluorinated polyimides with low dielectric: Study of structure– property relationship and applications.” High Performance Polymers 27: 842-851. doi: 10.1177/0954008314563995
    37. Ameduri, B., Boutevin, B., and Kostov, G. 2001. “Fluoroelastomers: synthesis, properties and applications.” Progress in Polymer Science 26: 105-187. doi: 10.1016/S0079-6700(00)00044-7
    38. Jia, R. P., Zong, A. X., He, X. Y., Xu, J. Y., and Huang, M. S. 2015. “Synthesis of newly fluorinated thermoplastic polyurethane elastomers and their blood compatibility.” Fibers and Polymers 16: 231-238. doi: 10.1007/s12221-015-0231-6
    39. Liu, T., and Ye, L. 2010. “Synthesis and properties of fluorinated thermoplastic polyurethane elastomer.” Journal of Fluorine Chemistry 131: 36–41. doi: 10.1016/j.jfluchem.2009.09.018
    40. Yang, L., Wang, Y., and Peng, X. 2017. “Synthesis and characterization of novel fluorinated thermoplastic polyurethane with high transmittance and superior physical properties.” Pure and Applied Chemistry 54: 516-523. doi: 10.1080/10601325.2017.1320759
    41. Wu, C. L., Chiu, S. H., Lee, H. T., and Suen, M. C. 2016. “Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders.” Polymers for Advanced Technologies 27: 665–676. doi: 10.1002/pat.3737
    42. Su, S. K., Gu, J. H., Lee, H. T., Wu, C. L., Hwang, J. J., and Suen, M. C. 2017. “Synthesis and properties of novel biodegradable polyurethanes containing fluorinated aliphatic side chains.” Journal of Polymer Research 24: 142. doi: 10.1007/s10965-017-1301-9
    43. Yang, W., Cheng, X., Wang, H., Liu, Y., and Du, Z. 2017. “Surface and mechanical properties of waterborne polyurethane films reinforced by hydroxyl-terminated poly (fluoroalkyl methacrylates).” Polymer 133: 68-77. doi: 10.1016/j.polymer.2017.11.021
    44. Wang, X., Xu, J., Li, L., Liu, Y., Li, Y., and Dong, Q. “Influences of fluorine on microphase separation in fluorinated polyurethanes.” Polymer 98: 311-319. doi: 10.1016/j.polymer.2016.06.039
    45. Kysilka, O., Rybáčková, M., Skalický, M., Kvíčalová, M., Cvačka, J., and Kvíčala, J. 2008. “HFPO Trimer-Based Alkyl Triflate, a Novel Building Block for Fluorous Chemistry. Preparation, Reactions and 19F gCOSY Analysis.” Collection of Czechoslovak Chemical Communications 73: 1799-1813. doi: 10.1135/cccc20081799
    46. Tang, Q., and Gao, K. 2017. “Structure analysis of polyether-based thermoplastic polyurethane elastomers by FTIR, 1H NMR and 13C NMR.” International Journal of Polymer Analysis and Characterization 22: 569-574. doi: 10.1080/1023666X.2017.1312754
    47. Kerr, S., and Naumkin, F. Y. 2017. “Noncovalently bound complexes of polar molecules: Dipole-inside-of-dipole vs. dipole–dipole systems.” New Journal of Chemistry 41: 13576-13584. doi: 10.1039/C7NJ02753B
    48. Laoharojanaphand, P., Lin, T. J., and Stoffer, J. O. 1990. “Glow discharge polymerization of reactive functional silanes on poly (methyl methacrylate).” Journal of Applied Polymer Science 40: 369-384. doi: 10.1002/app.1990.070400306
    49. Wang, L. F. 2007. “Experimental and theoretical characterization of the morphologies in fluorinated polyurethanes.” Polymer 48: 894-900. doi: 10.1016/j.polymer.2006.11.063
    50. Li, N., Zeng, F., Wang, Y., Qu, D., Hu, W., Luan, Y., Dong, S., Zhang, J. and Bai, Y. 2017. “Fluorinated polyurethane based on liquid fluorine elastomer (LFH) synthesis via two-step method: The critical value of thermal resistance and mechanical properties.” RSC Advances 7: 30970-30978. doi: 10.1039/C7RA04509C
    51. Sauer, B. B., McLean, R. S., and Thomas, R. R. 1998. “Tapping mode AFM studies of nano-phases on fluorine-containing polyester coatings and octadecyltrichlorosilane monolayers.” Langmuir 14: 3045-3051. doi: 10.1021/la971334d
    52. Xu, W., Zhao, W., Hao, L., Wang, S., Pei, M., and Wang, X. 2018. “Synthesis of novel cationic fluoroalkyl-terminated hyperbranched polyurethane latex and morphology, physical properties of its latex film.” Progress in Organic Coatings 121: 209-217. doi: 10.1016/j.porgcoat.2018.04.034
    53. Zhao, J., Zhu, W., Yan, W., Wang, X., Liu, L., Yu, J., and Ding, B. 2019. “Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability.” Composites Communications 15: 40-45. doi: 10.1016/j.coco.2019.06.002
    54. Fornasiero F. 2017. “Water vapor transport in carbon nanotube membranes and application in breathable and protective fabrics.” Current Opinion in Chemical Engineering 16: 1-8. doi: 10.1016/j.coche.2017.02.001
    55. Rother, M., Barmettler, J., Reichmuth, A., Araujo, J. V., Rytka, C., Glaied, O., Pieles, U. and Bruns, N. 2015. “Self‐sealing and puncture resistant breathable membranes for water‐evaporation applications.” Advanced Materials 27: 6620-6624. doi: 10.1002/adma.201502761
    56. Tehrani-Bagha, A. R. 2019. “Waterproof breathable layers–A review.” Advances in Colloid and Interface Science 268: 114-135. doi: 10.1016/j.cis.2019.03.006
    57. Zhao, J., Li, Y., Sheng, J., Wang, X., Liu, L., Yu, J., and Ding, B. 2017. “Environmentally friendly and breathable fluorinated polyurethane fibrous membranes exhibiting robust waterproof performance.” ACS Applied Materials and Interfaces 9: 29302-29310. doi: 10.1021/acsami.7b08885
    58. Wang, J., Zhang, H., Miao, Y., Qiao, L., Wang, X., and Wang, F. 2018. “Microphase separation idea to toughen CO2-based waterborne polyurethane.” Polymer 138: 211-217. doi: 10.1016/j.polymer.2018.01.058
    59. Furukawa, M., Mitsui, Y., Fukumaru, T., and Kojio, K. 2005. “Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate.” Polymer 46: 10817-10822. doi: 10.1016/j.polymer.2005.09.009
    60. Fortunati, E., Luzi, F., Janke, A., Häußler, L., Pionteck, J., Kenny, J. M., and Torre, L. 2017. “Reinforcement effect of cellulose nanocrystals in thermoplastic polyurethane matrices characterized by different soft/hard segment ratio.” Polymer Engineering and Science 57: 521-530. doi: 10.1002/pen.24532
    61. Schneider, N. S., Sung, C. P., Matton, R. W., and Illinger, J. L. 1975. “Thermal transition behavior of polyurethanes based on toluene diisocyanate.” Macromolecules 8: 62-67. doi: 10.1021/ma60043a014
    62. Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., and Laycock, B. 2019. “Degradation and stabilization of polyurethane elastomers.” Progress in Polymer Science 90: 211-268. doi: 10.1016/j.progpolymsci.2018.12.003
    63. Scaffaro, R., Lopresti, F., and Botta, L. 2017. “Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning.” European Polymer Journal 96: 266-277. doi: 10.1016/j.eurpolymj.2017.09.016
    64. Arrieta, M. P., Rivera, K. A. B., Salgado, C., Richa, A. M., López, D., and Peponi, L. 2018. “Degradation under composting conditions of lysine-modified polyurethane based on PCL obtained by lipase biocatalysis.” Polymer Degradation and Stability 152: 139-146. doi: 10.1016/j.polymdegradstab.2018.04.010
    65. Zhang, Y., Wang, J., Fang, X., Liao, J., Zhou, X., Zhou, S., Bai, F. and Peng, S. 2019. “High solid content production of environmentally benign ultra-thin lignin-based polyurethane films: Plasticization and degradation.” Polymer 178: 121572. doi: 10.1016/j.polymer.2019.121572
    66. Li, Y., Zhu, Z., Yu, J., and Ding, B. 2015. “Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application.” ACS Applied Materials and Interfaces 7: 13538-13546. doi: 10.1021/acsami.5b02848
    67. Sheng, J., Li, Y., Wang, X., Si, Y., Yu, J., and Ding, B. 2016. “Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance.” Separation and Purification Technology 158: 53-61. doi: 10.1016/j.seppur.2015.11.046
    68. Ge, Z., Zhang, X., Dai, J., Li, W., and Luo, Y. 2009. “Synthesis, characterization and properties of a novel fluorinated polyurethane.” European Polymer Journal 45: 530-536. doi: 10.1016/j.eurpolymj.2008.11.008
    69. Zhong, X., Lin, J., Wang, Z., Xiao, C., Yang, H., Wang, J., and Wu, X. 2016. “Preparation of a crosslinked coating containing fluorinated water-dispersible polyurethane particles.” Progress in Organic Coatings 99: 216-222. doi: 10.1016/j.porgcoat.2016.05.021
    70. Li, J. W., Lee, H. T., Tsai, H. A., Suen, M. C., and Chiu, C. W. 2018. “Synthesis and properties of novel polyurethanes containing long-segment fluorinated chain extenders.” Polymers 10: 1292. doi: 10.3390/polym10111292
    71. Shen, Z., Zheng, L., Li, C., Liu, G., Xiao, Y., Wu, S., Liu, J. and Zhang, B. 2019. “A comparison of non-isocyanate and HDI-based poly (ether urethane): Structure and properties.” Polymer 175: 186-194. doi: 10.1016/j.polymer.2019.05.010
    72. Rogulska, M., Maciejewska, M., and Olszewska, E. 2020. “New thermoplastic poly (carbonate-urethane) s based on diphenylethane derivative chain extender.” Journal of Thermal Analysis and Calorimetry 139: 1049-1068 doi: 10.1007/s10973-019-08433-z
    73. Niemczyk, A., Piegat, A., Olalla, Á. S., and El Fray, M. 2017. “New approach to evaluate microphase separation in segmented polyurethanes containing carbonate macrodiol.” European Polymer Journal 93: 182-191. doi: 10.1016/j.eurpolymj.2017.05.046
    74. Fernández d'Arlas, B., Rueda, L., De la Caba, K., Mondragon, I., and Eceiza, A. 2008. “Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI.” Polymer Engineering and Science 48: 519-529. doi: 10.1002/pen.20983
    75. Ly, B., Thielemans, W., Dufresne, A., Chaussy, D., and Belgacem, M. N. 2008. “Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices.” Composites Science and Technology 68: 3193-3201. doi: 10.1016/j.compscitech.2008.07.018
    76. Komada, M., Nakanishi, Y., Matsumoto, T., Kotera, M., Hongo, C., and Nishino, T. 2018. “Enhancement of adhesion by applying amine primer to isotactic polypropylene and open time dependence of primer effect.” International Journal of Adhesion and Adhesives 84: 173-177. doi: 10.1016/j.ijadhadh.2018.03.007
    77. Gurunathan, T., and Chung, J. S. 2016. “Physicochemical properties of amino–silane-terminated vegetable oil-based waterborne polyurethane nanocomposites.” ACS Sustainable Chemistry and Engineering 4: 4645-4653. doi: 10.1021/acssuschemeng.6b00768
    78. Chiu, C. W., Huang, T. K., Wang, Y. C., Alamani, B. G., and Lin, J. J. 2014. “Intercalation strategies in clay/polymer hybrids.” Progress in Polymer Science 39: 443-485. doi: 10.1016/j.progpolymsci.2013.07.002
    79. Ogunniyi, D. S. 2006. “Castor oil: A vital industrial raw material.” Bioresource Technology 97: 1086-1091. doi: 10.1016/j.biortech.2005.03.028
    80. Patil, C. K., Rajput, S. D., Marathe, R. J., Kulkarni, R. D., Phadnis, H., Sohn, D., Mahulikar P. P. and Gite, V. V. 2017. “Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids.” Progress in Organic Coatings 106: 87-95. doi: 10.1016/j.porgcoat.2016.11.024
    81. Karimi, M. B., Khanbabaei, G., and Sadeghi, G. M. M. 2017. “Vegetable oil-based polyurethane membrane for gas separation.” Journal of Membrane Science 527: 198-206. doi: 10.1016/j.memsci.2016.12.008
    82. Kunduru, K. R., Basu, A., Haim Zada, M., and Domb, A. J. 2015. “Castor oil-based biodegradable polyesters.” Biomacromolecules 16: 2572-2587. doi: 10.1021/acs.biomac.5b00923
    83. Liu, M., Zhang, T., Long, L., Zhang, R., and Ding, S. 2019. “Efficient enzymatic degradation of poly (ɛ-caprolactone) by an engineered bifunctional lipase-cutinase.” Polymer Degradation and Stability 160: 120-125 doi: 10.1016/j.polymdegradstab.2018.12.020
    84. Klinedinst, D. B., Yilgör, I., Yilgör, E., Zhang, M., and Wilkes, G. L. 2012. “The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1, 4-butanediol and PTMO soft segments.” Polymer 53: 5358-5366. doi: 10.1016/j.polymer.2012.08.005
    85. Li, H., Sun, J. T., Wang, C., Liu, S., Yuan, D., Zhou, X., Tan, J., Stubbs, L. and He, C. 2017. “High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin.” ACS Sustainable Chemistry and Engineering 5: 7942-7949. doi: 10.1021/acssuschemeng.7b01481
    86. Zia, F., Zia, K. M., Zuber, M., Ahmad, H. B., and Muneer, M. 2016. “Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives.” International Journal of Biological Macromolecules 87: 229-236. doi: 10.1016/j.ijbiomac.2016.02.058
    87. Lee, A., and Deng, Y. 2015. “Green polyurethane from lignin and soybean oil through non-isocyanate reactions.” European Polymer Journal 63: 67-73. doi: 10.1016/j.eurpolymj.2014.11.023
    88. Llevot, A., and Meier, M. 2017. “Perspective: green polyurethane synthesis for coating applications.” Polymer International 68: 826-831. doi: 10.1002/pi.5655
    89. Zhang, C., Madbouly, S. A., and Kessler, M. R. 2015. “Biobased polyurethanes prepared from different vegetable oils.” ACS Applied Materials and Interfaces 7: 1226-1233. doi: 10.1021/am5071333
    90. Somani, K. P., Kansara, S. S., Patel, N. K., and Rakshit, A. K. 2003. “Castor oil based polyurethane adhesives for wood-to-wood bonding.” International Journal of adhesion and Adhesives 23: 269-275. doi: 10.1016/S0143-7496(03)00044-7
    91. Patel, V. R., Dumancas, G. G., Viswanath, L. C. K., Maples, R., and Subong, B. J. J. 2016. “Castor oil: properties, uses, and optimization of processing parameters in commercial production.” Lipid Insights 9: LPI-S40233. doi: 10.4137/LPI.S40233
    92. Chen, R., Zhang, C., and Kessler, M. R. 2015. “Polyols and polyurethanes prepared from epoxidized soybean oil ring‐opened by polyhydroxy fatty acids with varying OH numbers.” Journal of Applied Polymer Science 132: 41213. doi: 10.1002/app.41213
    93. Ghosh, B., Gogoi, S., Thakur, S., and Karak, N. 2016. “Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material.” Progress in Organic Coatings 90: 324-330. doi: 10.1016/j.porgcoat.2015.10.025
    94. Wu, Y., Liu, Z., Herrera-Alonso, J. M., Marand, E., and Little, J. C. 2016. “A new method to predict the effective diffusion coefficient of gases and vapors in polyurethane/clay nanocomposite membranes.” Journal of Membrane Science 510: 201-208. doi: 10.1016/j.memsci.2016.02.068
    95. Charpentier, P. A., Burgess, K., Wang, L., Chowdhury, R. R., Lotus, A. F., and Moula, G. 2012. “Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings.” Nanotechnology 23: 425606. doi: 10.1088/0957-4484/23/42/425606
    96. Amado, F. D. R., Rodrigues Jr, L. F., Forte, M. M. C., and Ferreira, C. A. 2006. “Properties evaluation of the membranes synthesized with castor oil polyurethane and polyaniline.” Polymer Engineering and Science 46: 1485-1489. doi: 10.1002/pen.20602
    97. Liang, D., Zhang, Q., Zhang, W., Liu, L., Liang, H., Quirino, R. L., Chen, J., Liu, M., Lu, Q and Zhang, C. 2019. “Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers.” Journal of Cleaner Production 210: 1207-1215. doi: 10.1016/j.jclepro.2018.11.047
    98. Lligadas, G., Ronda, J. C., Galia, M., and Cadiz, V. 2013. “Renewable polymeric materials from vegetable oils: a perspective.” Materials Today 16: 337-343. doi: 10.1016/j.mattod.2013.08.016
    99. Mutlu, H., and Meier, M. A. 2010. “Castor oil as a renewable resource for the chemical industry.” European Journal of Lipid Science and Technology 112: 10-30. doi: 10.1002/ejlt.200900138
    100. Liang, H., Wang, S., He, H., Wang, M., Liu, L., Lu, J., Zhang, Y., and Zhang, C. 2018. “Aqueous anionic polyurethane dispersions from castor oil.” Industrial Crops and Products 122: 182-189. doi: 10.1016/j.indcrop.2018.05.079
    101. Liu, K., Miao, S., Su, Z., Sun, L., Ma, G., and Zhang, S. 2016. “Castor oil‐based waterborne polyurethanes with tunable properties and excellent biocompatibility.” European Journal of Lipid Science and Technology 118: 1512-1520. doi: 10.1002/ejlt.201500595
    102. Ionescu, M., Radojčić, D., Wan, X., Shrestha, M. L., Petrović, Z. S., and Upshaw, T. A. 2016. “Highly functional polyols from castor oil for rigid polyurethanes.” European Polymer Journal 84: 736-749. doi: 10.1016/j.eurpolymj.2016.06.006
    103. Goonoo, N., Bhaw-Luximon, A., Rodriguez, I. A., Wesner, D., Schönherr, H., Bowlin, G. L., and Jhurry, D. 2014. “Poly (ester-ether) s: II. Properties of electrospun nanofibres from polydioxanone and poly (methyl dioxanone) blends and human fibroblast cellular proliferation.” Biomaterials Science 2: 339-351. doi: 10.1039/C3BM60211G
    104. Y. Tokiwa, B. Calabia, C. Ugwu, S. Aiba, 2009. “Biodegradability of plastics.” International Journal of Molecular Sciences 10: 3722-3742. doi: 10.3390/ijms10093722
    105. Tao, C., Luo, Z., Bao, J., Cheng, Q., Huang, Y., and Xu, G. 2018. “Effects of macromolecular diol containing different carbamate content on the micro-phase separation of waterborne polyurethane.” Journal of Materials Science 53: 8639-8652. doi: 10.1007/s10853-017-1908-6
    106. Rueda, L., d'Arlas, B. F., Corcuera, M. A., and Eceiza, A. 2014. “Biostability of polyurethanes. Study from the viewpoint of microphase separated structure.” Polymer Degradation and Stability 108: 195-200. doi: 10.1016/j.polymdegradstab.2014.06.015
    107. Paik Sung, C. S., and Schneider, N. S. 1978. “Structure-property relationships of polyurethanes based on toluene di-isocyanate.” Journal of Materials Science 13: 1689-1699. doi: 10.1007/BF00548732
    108. Gurunathan, T., Mohanty, S., and Nayak, S. K. 2015. “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization.” Progress in Organic Coatings 80: 39-48. doi: 10.1016/j.porgcoat.2014.11.017
    109. Hormaiztegui, M. V., Aranguren, M. I., and Mucci, V. L. 2018. “Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid.” European Polymer Journal 102: 151-160. doi: 10.1016/j.eurpolymj.2018.03.020
    110. Gómez-Fernández, S., Ugarte, L., Peña-Rodriguez, C., Corcuera, M. Á., and Eceiza, A. 2016. “The effect of phosphorus containing polyol and layered double hydroxides on the properties of a castor oil based flexible polyurethane foam.” Polymer Degradation and Stability 132: 41-51. doi: 10.1016/j.polymdegradstab.2016.03.036
    111. Raghunanan, L. C., Fernandez-Prieto, S., Martínez, I., Valencia, C., Sánchez, M. C., and Franco, J. M. 2018. “Molecular insights into the mechanisms of humidity-induced changes on the bulk performance of model castor oil derived polyurethane adhesives.” European Polymer Journal 101: 291-303. doi: 10.1016/j.eurpolymj.2018.02.041
    112. Choi, K. K., Park, S. H., Oh, K. W., and Kim, S. H. 2018. “Effect of castor oil/polycaprolactone hybrid polyols on the properties of biopolyurethane.” Macromolecular Research 23: 333-340. doi: 10.1007/s13233-015-3052-y
    113. Su, S. K., Gu, J. H., Lee, H. T., Wu, C. L., Su, Y. R., and Suen, M. C. 2018. “Biodegradable polyurethanes: novel effects of the fluorine-containing chain extender on the thermal, physical and water vapor permeation properties.” Journal of Polymer Research 25: 227. doi: 10.1007/s10965-018-1607-2
    114. Yu, F., Cao, L., Meng, Z., Lin, N., and Liu, X. Y. 2016. “Crosslinked waterborne polyurethane with high waterproof performance.” Polymer Chemistry 7: 3913-3922. doi: 10.1039/C6PY00350H
    115. Hsu, S. Y., Lin, S. C., Wang, J. A., Hu, C. C., Ma, C. C. M., and Tsai, D. H. 2019. “Aerosol-based synthesis of silsesquioxane-graphene oxide and graphene-manganese oxide nanocomposites for high-performance asymmetric supercapacitors.” Electrochimica Acta 296: 427-437. doi: 10.1016/j.electacta.2018.11.065
    116. Piya, R., Zhu, Y., Soeriyadi, A. H., Silva, S. M., Reece, P. J., and Gooding, J. J. 2019. “Micropatterning of porous silicon Bragg reflectors with poly (ethylene glycol) to fabricate cell microarrays: Towards single cell sensing.” Biosensors and Bioelectronics 127: 229-235. doi: 10.1016/j.bios.2018.12.001
    117. Muzammil, I., Li, Y., and Lei, M. 2017. “Tunable wettability and pH‐responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane.” Plasma Processes and Polymers 14: 1700053. doi: 10.1002/ppap.201700053
    118. Swapna, V. P., Stephen, R., Greeshma, T., Sharan Dev, C., and Sreekala, M. S. 2016. “Mechanical and swelling behavior of green nanocomposites of natural rubber latex and tubular shaped halloysite nano clay.” Polymer Composites 37: 602-611. doi: 10.1002/pc.23217

    無法下載圖示 全文公開日期 2025/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE