簡易檢索 / 詳目顯示

研究生: 蔡夢翔
Meng-siang Tsai
論文名稱: 化學迴圈程序中擔體對鎳基載氧體積碳效應之探討
Study on Effect of Support on Coking Reaction for Nickel-base Oxygen Carrier in Chemical-Looping Combustion Process
指導教授: 曾堯宣
Yao-hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-lin Kuo
胡啟章
Chi-chang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 化學迴圈載氧體氧化鎳擔體積碳流體化床
外文關鍵詞: chemical looping, nickel oxide
相關次數: 點閱:368下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴圈燃燒程序中,使用碳氫化合物當作燃料常造成嚴重的積碳現象,會造成載氧體的失活。本研究探討鎳基載氧體經碳氫燃料還原後,金屬鎳催化碳氫燃料裂解造成之積碳現象。
使用光輔助固定床反應器(Photo-assisted packed-bed reactor,PPBR)、熱重分析儀(Thermogravimetric analyzer,TGA)及流體化床反應器(Fluidized-bed reactor,FBR)進行反應性測試。實驗中探討鎳含量對積碳之效應,實驗結果發現鎳含量超過30 wt%後,載氧體在合成氣氣氛下還原30分鐘後,鎳金屬會催化CO氣體,產生積碳現象。在不同鍛燒溫度製備載氧體,以探討晶相組成及反應性之差異,氧化鎳與二氧化鈦在700度以上形成鎳鈦氧尖晶石結構,鍛燒溫度提高,氧化鎳的初始還原溫度也提高,且低溫鍛燒的載氧體在氮氣升溫過程中,有輕微(6 wt%)釋氧的情況發生,是因氧吸附及鍵結於載氧體的晶格缺陷中,而在升溫過程釋出。將載氧體擔載於六種不同擔體,在PPBR中進行反應性測試,發現金屬鎳容易催化一氧化碳產生二氧化碳及碳沉積,可由實驗結果推測積碳之機制及影響因素。TGA實驗顯示積碳趨勢與PPBR結果相反,主要原因為TGA及PPBR中使用的氣體流率不同,造成氣體於載氧體中擴散效果不同。進一步將反應性與抗積碳較佳的載氧體大量製備且造粒,在TGA下進行15次氧化還原迴圈測試,載氧體具有良好的反應活性且無明顯聚集現象,於FBR下進行流體化及反應性測試,以冷模及理論計算推測載氧體的最小流體化速度,使載氧體達到流體化。載氧體在FBR中展現出良好的反應性,在還原段能產生純度接近100%的CO2,且連續操作10小時後,載氧體並沒有明顯燒結、聚集以及去流體化的現象。
上述實驗所篩選出來的NSi5-9載氧體,具有抗積碳效果且反應性佳,多次循環後仍具有良好反應性。價格低廉且反應性佳的SiO2將可作為具實用性之載氧體。


In chemical looping combustion process, the reaction of carbon deposition often results in the inactivation of oxygen carriers. In this work, we investigated the cracking reaction of hydrocarbon fuels in the presence of metallic nickel, which was the Ni-based oxygen carrier reduced by fuel.
Reactivities of oxygen carriers were evaluated in three different reactors, photo-assisted packed-bed reactor, thermogravimetric analyzer, and fluidized bed reactor. To figure out the effect of nickel content on carbon deposition, oxygen carriers with different loading amount of nickel was prepared. According to the results, the obvious carbon deposition was occurred after 30 minutes of reduction in syngas atmosphere as the nickel content was more than 30 wt%. The calcination temperature in the preparation procedure affected on the structure and reactivity of oxygen carriers. NiTiO3 spinel structure was formed at 700 oC with using titanium dioxide as supporting material. The reduction temperature of nickel oxide was increased with the increase in calcination temperature. The release of 6 wt% of oxygen gas from oxygen carriers was observed during the heating process under inert atmosphere. It is probably due to some oxygen was adsorbed or bonded in lattice defects of oxygen carriers. The oxygen carriers with six kinds of supports were evaluated in PPBR reactor under syngas and carbon monoxide atmospheres, respectively. Carbon monoxide was converted to carbon dioxide and coke with reacting with Ni-based oxygen carriers. The rational reaction mechanism was clarified according to these experiments. The carbon deposition results obtained from TGA was in contrary to those from PPBR, resulting from the different diffusion rates in these two reactors. The mass production of the optima OC with good redox reactivity and carbon-depositing resistance, NSi5-9, was further carried out for FBR. Fifteen redox-cycles of redox reactions in TGA demonstrated this OCs had good activity and agglomeration resistance. The minimum fluidization velocity was determined by cold model of FBR and theoretical calculations. NSi5-9 exhibited excellent reactivity and produced almost 100% CO2 during the reduction period in FBR. No significant sintering, agglomeration, and defluidization phenomena were observed after 10 h of continuous operation.
In summary, NSi5-9 had high reactivity and carbon-depositing resistance after multiple redox cycles in TGA and FBR. The SiO2 can be practical supporting material in CLC process due to its cheap cost and good reactivity.

目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2化學迴圈燃燒程序 2 1.3載氧體 4 1.4研究動機 5 第二章 文獻回顧 8 2.1鎳基載氧體 8 2.2其他金屬載氧體 19 2.3複合金屬載氧體 26 2.4集光相關文獻 31 第三章 研究方法 35 3.1實驗規劃 35 3.2實驗流程 36 3.3實驗藥品及材料 37 3.4實驗儀器 38 3.5藥品配置 40 3.5-1擔體製備 40 3.5-2濕式含浸法製備載氧體 41 3.5-3載氧體造粒 41 3.6實驗步驟 42 3.6-1熱種分析儀(TGA) 42 3.6-2光輔助固定床反應器(PPBR) 42 3.6-3 X光繞射儀(XRD) 43 3.6-4流體化床反應器(FBR) 43 第四章 結果與討論 44 4.1鎳含量的影響 44 4.1-1載氧體鎳含量 44 4.1-2鎳含量對化學迴圈的影響 45 4.2鍛燒溫度的影響 50 4.2-1晶相結構分析 50 4.2-2溫度還原曲線 51 4.2-3表面形態分析 58 4.3反應性測試-光輔助固定床反應器 59 4.3-1不同流量對光輔助化學迴圈的影響 59 4.3-2不同擔體對光輔助化學迴圈的影響 62 4.4反應性測試-熱重分析儀 70 4.4-1以鍛燒300度載氧體進行反應性測試 70 4.4-2以鍛燒900度載氧體進行反應性測試 77 4.5反應性測試-流體化床反應器 86 4.5.1造粒後載氧體進行15個迴圈測試 86 4.5.2載氧體進行流體化床測試 88 第五章 結論與未來展望 98 5.1結論 98 5.2未來展望 100 第六章 參考文獻 103

[1] 行政院環境保護署, “國家溫室氣體登錄平台” , (http://www.epa.gov.tw/ch/artshow.aspx?busin=12379&art=2010051814434560&path=13925).
[2] International Energy Agency (IEA), World Energy Outlook 2013, IEA Publications (2013).
[3] E.S. Rubin, “IPCC Special Report on Carbon Dioxide Capture and Storage”, Carnegie Mellon University (2006).
[4] J. Ada’nez, L.F. de Diego, F. Garcı’a-Labiano, P. Gaya’n, A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion” , Energy & Fuels 18, pp. 371-377 (2004).
[5] R. Siriwardane, H. Tian, D. Miller, G. Richards, T. Simonyi, J. Poston, “Evaluation of Reaction Mechanism of Coal-Metal Oxide Interactions in Chemical-Looping Combustion” , Combustion and Flame 157, pp. 2198-2208 (2010).
[6] P. Gayan, A. Cabello, F. Garcia-Labiano, A. Abad, L.F. de Diego, J. Adanez, “Performance of a Low Ni Content Oxygen Carrier for Fuel Gas Combustion in a Continuous CLC Unit Using a CaO/Al2O3 System as Support” , International Journal of Greenhouse Gas Control 14, pp. 209-219 (2013).
[7] B. Wang, R. Yan, D.H. Lee, Y. Zheng, H. Zhao, C. Zheng, “Characterization and Evaluation of Fe2O3/Al2O3 Oxygen Carrier Prepared by Sol–Gel Combustion Synthesis” , Journal of Analytical and Applied Pyrolysis 91, pp. 105-113 (2011).
[8] J.I. Baek, C.K. Ryu, T.H. Eom, J.B. Lee, W.S. Jeon, J. Yi, “Chemical-Looping Combustion of Syngas by Means of Spray-Dried NiO Oxygen Carrier” , Korean Journal of Chemical Engineering 28(7), pp. 1025-1031 (2011).
[9] S. Abanades, H.I. Villafan-Vidales, “CO2 and H2O Conversion to Solar Fuels Via Two-Step Solar Thermochemical Looping Using Iron Oxide Redox Pair” , Chemical Engineering Journal 175, pp. 368- 375 (2011).
[10] P. Azadi, J. Otomo, H. Hatano, Y. Oshima, R. Farnood, “Interactions of Supported Nickel and Nickel Oxide Catalysts with Methane and Steam at High Temperatures” , Chemical Engineering Science 66, pp. 4196-4202 (2011).
[11] P. Gayan, C. Dueso, A. Abad, J. Adanez, L. F. de Diego, F. Garcia-Labiano, “NiO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion Prepared by Impregnation and Deposition-Precipitation Methods” , Fuel 88, pp. 1016-1023 (2009).
[12] Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, “Preparation and Characterization of Several High-Area NiAl2O4 Spinels. Study of Their Reducibility” , Chemistry of Materials 12, pp. 331-335 (2000).
[13] A. Dura’n, J.M. Monteagudo, “Solar Photocatalytic Degradation of Reactive Blue 4 Using a Fresnel Lens” , Water Research 41, pp. 690-698 (2007).
[14] F.X. Chiron, G. S. Patience, “Steam Carbon Gasification of a Nickel Based Oxygen Carrier” , Fuel 90, pp. 2461-2466 (2011).
[15] S. Wang, M. Luo, G. Wang, L. Wang, M. Lv, “Analysis of Reactivity of a CuO-Based Oxygen Carrier for Chemical-Looping Combustion of Coal” , Energy & Fuels 26, pp. 3275-3283 (2012).
[16] T. Mattisson, A. Lyngfelt, H. Leion, “Chemical-Looping With Oxygen Uncoupling for Combustion of Solid Fuels” , International Journal Of Greenhouse Gas Control 3, pp.11-19 (2009).
[17] V. Sardeshpande, I.R. Pillai, “Effect of Micro-Level and Macro-Level Factors on Adoption Potential of Solar Concentrators for Medium Temperature Thermal Applications” , Energy for Sustainable Development 16, pp. 216-223 (2012).
[18] F. Li, Z. Sun, S. Luo, L.S. Fan, “Ionic Diffusion in the Oxidation of Iron-effect of Support and its Implications to Chemical-Looping Applications” , Energy Environmental Science 4, pp. 876-880 (2011).
[19] H. Hatano, “Low Temperature Gasification Using Lattice Oxygen” , Chemical Engineering Science 65, pp. 47-53 (2010).
[20] H. Hong, Q. Liu, H. Jin, “Operational Performance of the Development of a 15 kW Parabolic Trough Mid-Temperature Solar Receiver/Reactor for Hydrogen Production” , Applied Energy 90, pp. 137-141 (2012).
[21] T. Han , H. Hong, F. He, H. Jin, “Reactivity Study on Oxygen Carriers for Solar-Hybrid Chemical-Looping Combustion of Di-Methyl Ether” , Combustion and Flame 159, pp. 1806-1813 (2012).
[22] P. Furler, J.R. Scheffea, A. Steinfeld, “Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor” , Energy Environmental Science 5, pp. 6098-6103 (2012).
[23] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria” , Science 330, pp. 1797-1801 (2010).
[24] S. Abanades, A.L. Gal, “CO2 Splitting by Thermo-Chemical Looping Based on ZrxCe1-xO2 Oxygen Carriers for Synthetic Fuel Generation” , Fuel 102, pp. 180-186 (2012).
[25] E. Ksepko, R.V. Siriwardane, H. Tian, T. Simonyi, M. Sciazko, “Comparative Investigation on Chemical Looping Combustion of Coal-Derived Synthesis Gas containing H2S over Supported NiO Oxygen Carriers” , Energy & Fuels 24, pp. 4206-4214 (2010).
[26] P. Gaya’n , L.F. de Diego, F. Garcı’a-Labiano, J. Ada’nez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-based Oxygen Carriers for Chemical-Looping Combustion” , Fuel 87, pp. 2641-2650 (2008).
[27] V.V. Galvita, H. Poelman, G.B. Marin, “Hydrogen Production from Methane and Carbon Dioxide by Catalyst-Assisted Chemical Looping” , Topics in Catalysis 54, pp. 907-913 (2011).
[28] J. Otomo, Y. Furumoto, H. Hatano, T. Hatanaka, Y. Oshima, “Nickel Oxide Redox Processes with Oxide Ion Conductor-Supported Nickel Oxide in Dry and Humidified Methane: Effect of Oxide Ion Conductors on Induction Period in Nickel Oxide Reduction and Subsequent Hydrogen Production” , Fuel 104, pp. 691-697 (2013).
[29] H. Song, E. Doroodchi, B. Moghtaderi, “Redox Characteristics of Fe-Ni/SiO2 Bimetallic Oxygen Carriers in CO under Conditions Pertinent to Chemical Looping Combustion” , Energy & Fuels 26, pp. 75-84 (2012).
[30] Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, “Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier” , Energy & Fuels 26, pp. 2505-2511 (2012).
[31] C.Y. Wen and Y.H. Yu, “A Generalized Method for Predicting the Minimum Fluidization Velocity” , AIChE Journal 12, pp. 610-612 (1966).
[32] S.Yang, K. Kim, J.I. Baek, J.W. Kim, J.B. Lee, C.K. Ryu, G. Lee, “Spinel Ni(Al,Fe)2O4 Solid Solution as an Oxygen Carrier for Chemical Looping Combustion” , Energy & Fuels 26, pp. 4617-4622 (2012).
[33] J.I. Baek, C.K. Ryu, J.H. Lee, T.H. Eom, J.B. Lee, H.J. Ryu, J. Ryu, J. Yi, “The Effects of Using Structurally Less-Stable Raw Materials for the Support of a Spray-Dried Oxygen Carrier with High NiO Content” , Fuel 102, pp. 106-114 (2012).
[34] C. Dueso, F. Garcia-Labiano, J. Adanez, L.F. de Diego, P. Gayan, A. Abad, “Syngas Combustion in a Chemical-Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier” , Fuel 88, pp. 2357-2364 (2009).
[35] A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, “Manganese/Iron, Manganese/Nickel, and Manganese/Silicon Oxides Used in Chemical-Looping With Oxygen Uncoupling (CLOU) for Combustion of Methane” , Energy & Fuels 23, pp. 5269-5275 (2009).
[36] M. Ortiz, L. F. de Diego, A. Abad, F. Garcia-Labiano, P. Gayan, J. Adanez, “Catalytic Activity of Ni-based Oxygen-Carriers for Steam Methane Reforming in Chemical-Looping Processes” , Energy & Fuels 26, pp. 791-800 (2012).
[37] H.J. Ryu, N.Y. Lim, D.H. Bae, G.T. Jin, “Carbon Deposition Characteristics and Regenerative Ability of Oxygen Carrier Particles for Chemical-Looping Combustion” , Korean Journal of Chemical Engineering 20(1), pp. 157-162 (2003).
[38] M.H. Khedr, “Isothermal Reduction Kinetics of Fe2O3 Mixed with 1-10% Cr2O3 at 1173-1473K” , ISIJ International 40, pp. 309-314 (2000).

無法下載圖示 全文公開日期 2018/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE